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ABSTRACT

The assessment of intercoder agreement in the unitizing phase of content analysis
has long been overlooked. In particular, little attention has been paid to the issue of co-
termination, which refers to the level of agreement among pairs of coders to break a
given segment of content at the same points into smaller units. Although the kappa
agreement coefficient can be used for the purpose of summarizing the agreement of co-
termination, it has some inherent limitations. A new family of coefficients based on the
Multi-response Randomized Blocks Permutation procedure is presented and numerical

results are given.
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CHAPTER 1

INTRODUCTION

Content analysis is a quantitative research methodology widely employed in the
field of communication. Berelson’s (1952) often cited definition of content analysis as an
objective, systematic, and quantitative endeavor to describe the content of
communication messages clearly endorsed the usefulness of content analysis to
communication scholars. Given the importance of a certain research method, one would
expect research reports using such a method to be well represented in communication
journals, and such is indeed true for content analysis. In a recent “content analysis of
content analyses” of articles published in Journalism and Mass Communication
Quarterly between 1971 and 1995, Riffe and Freitag (1998) located 486 full-length
reports using content analysis, comprising of roughly one fourth of the total number of
articles published. They demonstrated an increasing trend of utilizing and featuring
content analysis in communication research over the past quarter of a century, and they
argued, as electronic databases and archives became more accessible to researchers and
communication practitioners, this trend was likely to continue. An earlier study by
Wilhoit (1984) suggested that more than 20 percent of theses and dissertations listed in

Journalism Abstracts used content analysis. Moffett and Dominick (1987) reported a
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similar result that 21 percent of the articles published in Journal of Broadcasting between
1970 and 1985 employed content analysis. Fowler (1986) confirmed the centrality of
content analysis in the field of communication by showing that 84.1 percent of master’s
level research methods courses in journalism and communication graduate programs
included content analysis. I also conducted an informal “content analysis of content
analyses” published by Journalism and Mass Communication Quarterly between 1999
and 2001 and found that 43 papers used content analyses methodology, representing over
33% of all the research reports published in this journal.

As Krippendorft (1980) succinctly remarked, making “inferences from essentially
verbal, symbolic, or communicative data” has always been at the heart of content analysis
(p- 20). In order for scientific inferences to be valid, one must first ascertain the
reliability of the research instrument. Just as chemists could ill-afford an uncalibrated
balance in a chemical experiment, one could hardly imagine living a life in the
communication scholarship without assessing the reliability of content analysis. Of
course, if a stream of messages is to be analyzed by a well-designed computer program,
one can probably worry less about reliability, but in most instances, if not all, content
analyses still require much human labor, and thus the errors of human analysts become
almost inevitable.

The standard process of content analysis, as described in most introductory
communication research methods textbooks (e.g. Frey, Botan, & Kreps, 2000; Stewart,
2002; Wimmer & Dominick, 1994) essentially involves a coding process. Guetzkow
(1950) observed that any transformation of qualitative data into a form “susceptible to

quantitative treatment constitutes coding” (p. 47). He further emphasized that the coding
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process could be broken down into two related phases: that of separating the qualitative
material into units, and that of classifying the unitized data into established categories.
The former is often termed unitizing, and the latter categorizing. The two processes are
integral elements of content analysis yet require different strategies of reliability
assessment. One term that needs a little clarification is categorizing. In many practical
situations the coded units are indeed later classified into categorical sets, but this is not
necessarily true. Coded units may be rated on ordinal, interval or ratio scales in
subsequent coding procedures. The term categorizing will remain in use in the
paragraphs to follow, but without any implication of merely categorizing the coded units
into qualitative (nominal) sets.

In the coding process, usually a set of human coders or judges are involved. The
assessment of reliability of the content analysis thus becomes an assessment of the
reliability of the coders, even though this is not a sufficient condition for the entire
content analysis study to be reliable, the coding process is of such importance that low
intercoder reliability would render all subsequent analyses meaningless, because low
intercoder reliability would suggest that the obtained results were largely not replicable
(Krippendorft, 1980, p. 131). Ideally, the coders should be trained to rate or judge the
content independently and yet to arrive at the same ratings in precisely in the same
manner as intended by the coding scheme.

Intercoder reliability is established when the same pieces (possibly a very large
number) of content yield same ratings from independent coders using a common data
language (Krippendorft, 1980, p. 133). Formally, the term intercoder reliability should

be more appropriately termed intercoder agreement (ct. Lombard, Snyder-Duch, &
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Bracken, 2002), but the two terms will nevertheless be used interchangeably in the pages
to follow since given the present context the meaning of the two terms is not much
different. Another distinction that should be made is the “depth” at which the messages
are to be coded. Berelson (1952) clearly intended content analysts to deal only with the
manifest content, i.e. the information “as is,” without invoking additional mental efforts
of the coders to discover the latent content or the implied meaning. However, unless the
research question can be easily answered by simply counting the number of words in a
newspaper article or the number of occurrences of the names of candidates in pre-election
news coverage — which can be quite easily done with a computer — the coding process
will often require the coders to make subjective judgments. Under those circumstances,
readers of the research would demand the researchers to demonstrate that “those
judgments, while subjectively derived, are shared across coders,” which again confirmed
the practical necessity of establishing intercoder agreement in content analysis (Potter &
Levine-Donnerstein, 1999, p. 266).

Having illustrated the importance of intercoder agreement, the current status of
correctly using and reporting intercoder agreement measures in communication journals
is quite alarming. Riffe and Freitag (1997) found that only half of the 486 articles
published in Journalism and Mass Communication Quarterly between 1971-1995
reported intercoder reliability. A recent study by Lombard et al. (2002) searched
virtually all content analysis articles indexed in Communication Abstracts from 1994 to
1998 and of the 200 articles they found, only 69% ever mentioned intercoder reliability,
and usually the methods for computing intercoder reliability were not reported. Of the

449% of all articles that did report the names of the specific methods, more than half of
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them relied on liberal indices that are not chance-corrected, such as percent agreement,
which seriously undermined the effort of computing and reporting reliability coefficients.
I found that of the 43 content analyses published in Journalism and Mass Communication
Quarterly from 1999 to 2001, only 65% reported using some form of intercoder
reliability measurement. More than one third of the articles that reported reliability
coefficients were still using Holsti’s (1969) method, which is not chance-corrected. In
addition, two papers employed Pearson’s correlation coefficient » when assessing the
agreement of categorical coding, which is also a very poor practice that can hide huge
proportions of disagreement.

Given the current undesirable state of affairs of appropriately using and reporting
intercoder agreement indices in the communication scholarship, the next section shall
explicate intercoder agreement in the context of a two-stage coding process, namely,
unitizing and categorizing. The importance of co-fermination when unitizing textual data

shall also be presented.



CHAPTER 2

CO-TERMINATION

When Guetzkow (1950) wrote about unitizing and categorizing, he presented a
convincing case that in order for the entire content analysis to be reliable, one has to
regard the assessment of the overall intercoder agreement as a two-stage process. Ideally
one should compute agreement measures for unitizing first and then calculate the
agreement indices for categorizing, with the “overall” reliability referring to the
combined intercoder agreement in both stages. One should note that this overall
reliability does not always have to be expressed in quantitative terms. It is possible that a
particular content analysis consists merely of categorizing existing units, and then this
two-stage notion would not be relevant. However, there are times when unitizing is a
must, and under such circumstances, the intercoder agreement of unitizing becomes
crucial. This paper does not attempt to develop any new agreement indices for the
categorizing phase, as there are established methods already. Instead, the aim is on how
the agreement of unitizing can be better summarized, and this goal cannot be achieved
without first understanding the complexities of intercoder agreement in the unitizing

phase.



The agreement of unitizing focuses on how independent coders choose breaking
points at various places in a segment of content, be it a sentence, a paragraph, an article,
or an entire television show. The segments are assumed to be clearly delineated from one
another and are usually naturally given. This assumption is not unfair because most of
the qualitative content that can serve as segments for coding has unambiguous endpoints.
For example, if a newspaper article is chosen as a segment, where it ends is crystal clear.
It is further assumed that segments are of two types, discrete and continuous.

Discrete segments are composed of a finite number of elements. Defining what is
an element is very difficult, and in a sense it is an inherent flaw of discrete segments,
because 1) it depends on the research question, 2) how detailed the researcher would like
the content analysis to be, and 3) for two researchers using same piece of content segment,
if the element is defined in different ways, the two will necessarily come up with
different intercoder reliability coefficients. But for now, examples should at least help
illustrate what constitutes an element. Consider, for instance, a sentence from an online
chat transcript: “Apparently, from what I read, they haven’t identified the dead body yet.”
It is convenient to define a word — anything in between two spaces — as an element, and
this is a segment containing 12 elements. Thus defined, unitizing becomes an operation
of grouping elements into units. Generally speaking, a unit is a subset (not necessarily a
strict subset) of a segment. In the context of discrete content, a unit may contain one or
more elements, and a segment may contain one or more units. As a concrete example,
Schaefer (1999) analyzed news reports of the State of the Union Address in the New
York Times at the assertion-level, and according to his definition, a paragraph in an

article may contain multiple assertions, so it is easy to infer that a sentence, in this case,
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can serve as an element. Intercoder disagreement arises when coders define the units
differently. Suppose that a paragraph contains 5 sentences, and there are two judges
coding this paragraph. The first coder grouped the first two sentences into an assertion
while the other grouped the first three into one assertion. It is easy to see that they are in
disagreement.

The idea of an element is not applicable to continuous segments. For instance, a
researcher may want to unitize audio/video recordings. It is probably hard to define what
an element is within a continuous stream of audio/ video recording, but it is easy to deal
with the relative /ength of a unit, perhaps expressed in terms of time. One can imagine
the coder using a stopwatch to record the lengths of units, and intercoder disagreement
occurs when the coders come up with different length readings. For instance, suppose
two coders are involved in unitizing a 10-minute segment of audio recording into 2 units,
and one of the coders defined the first unit to be 5 minutes long, while the other defined it
to be 6 minutes long. Apparently the two coders are in disagreement for this continuous
segment.

The idea of length is widely applicable and one can essentially re-express the
discrete type of unitizing using lengths readings as well. The basic idea is to define the
length of a discrete unit as the number of elements it contains. Consider this example:
ABCD, a discrete segment of 4 elements, is to be coded by two judges by putting slashes
at the breaking points. Judge 1 gave: A/B/CD, and judge 2 gave: A/BC/D. They both
came up with three units for this segment, and the reliability data, using discrete terms, is
a set of binary streams: 1 1 0, for judge 1; and 1 0 1 for judge 2. The number of entries in

the binary streams is the number of elements minus 1, representing the maximum number
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of possible breaking points. In this case, there are altogether 3 possible breaking points,
between A and B, between B and C, and between C and D. The 1’s in a stream signify
observed breaking points. For example, the first coder broke between A and B, which is
the first possible breaking point in the segment, so the first entry in the binary stream is 1.
Using the same logic, since the second coder did not break between B and C, the second
entry in the binary stream corresponding to this coder is a zero. The same data can be
expressed in terms of lengths: 1 1 2 for judge 1; and 1 2 1 for judge 2. The numbers
correspond to the number of elements in a particular unit, and the total number of entries
equals the number of units. For instance, the first unit for judge 1 contains one element —
“A,” therefore the corresponding length reading is 1. Take the second unit for judge 2 as
another example. The length is 2 because “BC” contains 2 elements.

Having defined the terms, it is natural to introduce the concept of co-termination
and review what Guetzkow (1950) recognized as the two kinds of errors of unitizing a
stream of content: (1) failure to agree on the breaking points between the units, and (2)
failure to attain the same number of units (p. 54). Co-termination, or co-terminability, a
term introduced but not clearly defined in Guetzekow (1950), refers to the agreement
among pairs of coders to break a given segment of content at the same points into the
same number of smaller units. Note that this definition essentially contains two
components: (1) the agreement on the breaking points, and (2) the agreement on the
number of units. Such a definition of co-termination is said to be in a strong form
because there will be perfect agreement of unitizing among coders when the strong form
of co-termination is achieved. It is the necessary and sufficient condition for a weaker

form to exist because, for example, it is possible that a pair of coders agree partially on
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how to choose the breaking points and yet at the same time do not agree on how many
units there are in the segment of content. Suppose two coders were instructed to break an
article into smaller units containing one or more paragraphs. The two coders started out
in perfect agreement as to how to group the paragraphs into units up to a certain
paragraph after which things started to fall apart. As a result, the numbers of units were
different, and certainly by definition of strong co-termination, they failed to achieve
agreement. However, one has to acknowledge that at least the two agreed somewhat in
the beginning, and a good agreement measure should give partial credit to such
agreement. It is conceivable that any measure of agreement based on the strong form of
co-termination would necessarily be a conservative one and thus the existence of a weak
form of co-termination is not an idea plucked out from the thin air.

The weak form of co-termination essentially depends on the sequential nature of
content streams, i.e. one can only start unitizing from the beginning of a segment and
proceed as the stream goes. Of course, going backwards from the end is not impossible,
but this is makes little difference because one can then define the end as the beginning.
Expressed in discrete terms, the weak form of co-termination between two-coders is
defined as choosing breaking points so that at least the two coders grouped one set of
elements in the same manner. Consider the previous example again: a segment — ABCD,
with 4 elements, and 3 coders were to unitize it. The result happened to be as follows:
coder 1 — A/B/CD, coder 2 — AB/C/D, and coder 3 — A/B/C/D. There are three distinct
pairs of coders: 1 vs. 2,2 vs. 3, and 1 vs. 3. Clearly, none of the pairs achieved co-
termination if the strong definition is used. Coders 1 and 2 gave the same number of

units but were not co-terminus. Although coders 1 and 3 gave different numbers of units
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(3 and 4, respectively), they actually attained the weak form of co-termination for the
groupings of A and B into the first and second unit. For coders 2 and 3, they achieved
co-termination for C and D. The basic conceptualization of the measurement of co-
termination would be to employ the strong definition when the coders agree on the
number of units and to use the weak form when the numbers of units are different.
Henceforth, it shall be implied that the strong definition is used whenever the numbers of
units are the same; otherwise, the weak definition will be utilized.

It is worthy of pointing out that according to Hubert (1977) there are three
definitions of agreement when the number of coders goes beyond two: DeMoivre’s
definition, target-rater definition, and pair-wise definition. The first one refers to the
unanimous agreement of all coders, and the second one refers to the joint agreement of all
other coders with a “target-rater” who provides the “true” rating, and the third, which is
also what is implied in the definition of co-termination, refers to the agreement between
any pairings of coders. It is easy to see that DeMoivre’s definition tends to yield the most
conservativeness. Most of the popular intercoder agreement indices that can handle three
or more coders use the pair-wise definition, as does the new coefficient to be proposed in
subsequent sections.

Having defined what co-termination is, it is not difficult to infer that the mere
agreement on number of units does not imply co-termination. As to the relative
importance of the two, Guetzkow (1950) remarked that the failure to achieve “co-
terminability” is less likely to lead to confusions and low intercoder reliability in the
subsequent categorizing of the coded units (p. 55). There is absolutely nothing wrong

with this argument, because how far reliability assessment should go is a practical matter
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related to the nature of the specific study at hand. If the unit boundaries are relatively
clear, or if slight inconsistencies in co-termination do not significantly affect the
subsequent use of the coded units, one could worry less about co-termination and focus
more on achieving a high level of agreement on the number of units. However, there are
certain times when disagreement in co-termination may lead to different interpretations
of the same data, even though the number of units are the same across coders. For
instance, if two coders were to divide the sentence “Apparently, from what I read, they
haven’t identified the dead body yet,” and the coders agreed that it contained two units,
but the first coder put the division mark right after “apparently,” while the second put it
after “read.” The interpretation of the two units would necessarily be different, because a
stand-alone “apparently” would suggest confirmation, while “apparently, from what I
read” would refer to the clear inferences that the chat user could make from what he or
she read. This example might be a very trivial one. What is important is to realize that
the mere agreement on number of units does not automatically imply reliability of
unitizing. Still using the previous example, suppose that the first coder divided the
sentence after both “apparently” and “read,” and the second coder only divided the
sentence after “apparently,” the number of units for the two coders are 3 and 2,
respectively, and there seems to be much disagreement between the two, but in fact they
did achieve co-termination, at least for the first unit. Given such results, at least the

interpretation for the first unit — “apparently,” is unambiguous.
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CHAPTER 3

POPULAR INDICES OF INTERCODER AGREEMENT

This section briefly examines the five most widely used intercoder reliability
indices in the communication literature and explicates their limited applicability to the
measurement of co-termination in the unitizing phase of content analysis. Most of them
are intended for bivariate nominal level coding. For discrete unitizing reliability data
(binary streams) between two coders, Cohen’s x can be used, but only to a limited extent.
For continuous content, no current indices are directly applicable.

Percent Agreement and Holsti’s Method

This is perhaps the most easily understood method for calculating intercoder
agreement for the categorizing phase. It is simply the “percentage of all coding decisions
made by pairs of coders on which the coders agree” (Lombard, et al., 2002, p. 590). This
is not a chance corrected measure, and Krippendorff (1980) illustrated how chance could
artificially inflate percent agreement with a neat example (pp. 133-135). In general,
using percent agreement is a very poor practice that can artificially inflate agreement.

Holsti (1969) proposed a variation of the percent agreement measure that does not
require the two coders to be coding the same pieces of content. His formula can be

expressed as
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2N
Agreement = ———,
N, +N,

where N is the total number of coding decisions the two coders agreed upon, and N; and
N, are the numbers of coding decisions by the first and the second coder, respectively.
When two coders are coding the same pieces of content, this formula is the same as
percent agreement. This is still not a chance-corrected measure and it suffers from the
same drawbacks as percent agreement. Even though some prominent statisticians have
argued against the use of chance-corrected measures (e.g., Goodman & Kruskal, 1954),
supporters of chance-corrected measures “far outweigh detractors” (Berry & Mielke,
1988, p. 922).
Scott’s ©

This is a chance-corrected index first introduced by Scott (1955) primarily in the
context of coding qualitative data obtained from surveys. In its original form, this index
is only applicable to nominal level coding and accommodates only two coders, although
it is worth mentioning that Craig (1981) has given an extension of Scott’s 7 to the case of

multiple coders. Scott’s z’s basic formulation is the ratio (P, —P,)/(1-P)), where P, is

the proportion of observed agreement, and P, is the proportion of agreement expected by
chance. Usually it is assumed that two coders independently classify each of the » units
into one of ¢ established categories. The layout for computing z essentially involves the
construction of a two-way cross-classification table, with entries in the table being the
proportion of observations falling into one of the c-by-c cross-classifications. Scott’s 7 is
the first coefficient that considers the expected agreement as a function of both the

number of categories and the marginal distributions, but its assumptions are over
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simplifications of the reality. The 7 coefficient assumes that the column and row
marginal distributions are identical to the “true” proportions, and that the two coders

share the same marginal distributions. In other words, when P, is unambiguously given
by the sum of the diagonal elements of the c-by-c cross-classification table, P is taken to

be the sum of the squares of “true” marginal proportions. Given the context of survey
research, where 7 originated, the former assumption is not unreasonable, as the “true”
proportions are usually obtainable, and in some situations this assumption has given
Scott’s 7 a distinct edge over similar coefficients like Cohen’s x, because 7 can still be
computed when the two coders have coded different pieces of the content, while
computation of x requires that the pair of coders have coded the same units (Craig, 1981,
p. 261). However, it is the latter assumption of 7 that is particularly problematic. As
Cohen (1960) pointed out, “one source of disagreement between a pair of judges is
precisely their proclivity to distribute their judgments differently over the categories” (p.
41). Furthermore, the “true” proportions are not always available outside of the field of
survey research. Making such unrealistic assumptions only hinders the usefulness of the
7 coefficient. Within communication, however, 7 is perhaps still the most widely used
measure of intercoder agreement. In the informal content analysis of research reports in
Journalism and Mass Communication Quarterly, 1 found 28 papers that reported some
form of reliability assessment. 10 of them used z, which is as popular as the Holsti’s
(1969) method.
Cohen’s k

Cohen’s (1960) « is defined in much the same way as Scott’s 7, in that both

coefficients require the construction of a c-by-c cross-classification table to calculate the
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agreement index. The x coefficient, and its variants for bivariate nominal level coding
takes the familiar form of a ratio between observed and expected proportions,

kK =(P,—P)/(1-P),with P, given by the sum of the diagonal elements of the c by ¢
cross-classification table, and P, is found by first multiplying each column marginal with
its associated row marginal and then taking the sum of the products. Note that the P,’s

are calculated differently for x and 7, and for bivariate nominal level coding, this is the
only difference between the two coefficients. One can easily see that x takes into account
the difference in the two coders’ marginal distributions when calculating the expected
agreement.

Cohen’s « has enjoyed continued development by psychological methodologists.
Cohen (1968) himself introduced a weighting procedure that accounts for the differential
severity of disagreements. Fleiss (1971) gave its extensions to the case of multiple raters.
Fleiss and Cohen (1973) established the equivalence of weighted x and the intra-class
correlation coefficient. Hubert (1977) introduced the underlying mathematical model of
matching distributions in probability theory to users of the x coefficient. Fleiss, Nee, and
Landis (1979) worked out x’s asymptotic variance. Conger (1985) extended it to
measure agreement over time for continuous nominal scales. However, the x coefficient
is not as popular in communication as it is in other social sciences such as psychology.
Krippendorff’s o

When the number of coders is exactly two with nominal level coding assumed,
Krippendorff’s (1970) a coefficient is identical to Scott’s 7 (Krippendorft, 1980, p. 138).

What makes the a coefficient more appealing than its competitors is that it offers an easy
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extension to measure the agreement of higher levels of measurement and of multiple
coders. Recall that Guetzkow (1950) described the two kinds of errors in unitizing

textual data. It appears that Krippendorft’s a coefficient may well serve the purpose of
calculating the intercoder agreement of the number of units of a given segment of content.
Krippendorff’s a is not very widely used by communication researchers either. I found in
the “content analysis of content analyses” of the 28 articles in Journalism and Mass
Communication Quarterly between 1999 and 2001, only three used Krippendorft’s (1970)
o and three used Cohen’s (1965) x, as compared to the ten articles using Holsti’s (1969)

method.
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CHAPTER 4

MULTI-RESPONSE RANDOMIZED BLOCKS LAYOUT
AND INTERCODER AGREEMENT

This section describes some of the details of the Multi-response Randomized
Blocks Permutation procedure (MRBP) relevant to the assessment of agreement. MRBP
is a variation of the Multi-response Permutation Procedure (MRPP) (Mielke, Berry, &
Johnson, 1976). It is first introduced by Mielke & Iyer (1982) as a supplement to MRPP.
Both MRPP and MRBP are based on the general principle of permutation tests (for
details of MRPP, please refer to Appendix A; for an in depth treatment of permutation
tests, consult Edgington, 1987). In its original formulation, MRBP defines a b-block by
g-treatment randomized blocks experiment and within each block there is only one 7-
dimensional observation per treatment, taken as n = 1 for each cell. The reader can think
of the MRBP layout as a b-row by g-column table, and of course, there are altogether (bg)
cells in this table. In each cell, there is only one observation. This observation can be a
multivariate / multidimensional response vector (»> 1) or it can be a scalar (» = 1).
MRBP makes use of the distances between these multidimensional response vectors

when constructing the test statistic.
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Let X/ = (xi1s, ..., x;1), and X; = (x1, ..., X,y) be the transposes of two r-by-1
vectors of multivariate responses. The symmetric distance function between the two

multidimensional response vectors — X; and X; — is given by

A[,J :{Z(xd _ch)z} 5 (1)

where x.; and x., are the corresponding elements in the r-dimensional response vectors. It
is easy to see that the distance between two multivariate responses is a power function of
the sum of the squared differences between each element and therefore the choice v gives
rise to a variety of distance functions. The value of v determines the analysis space of the
test and choice is somewhat arbitrary, but the most widely used two are v=1 and v= 2,
which corresponds to metric Euclidean space (the triangle inequality holds) and non-
metric squared Euclidean space (the triangle inequality fails). Some of the most widely
employed tests such as the z-test, ANOV A, and their multivariate counterparts —
Hotelling’s generalization of Student’s ¢, and Bartlett-Nanda-Pillai trace test in MANOVA
all use squared Euclidean analysis space. Berry and Mielke (1988) pointed out that the
choice of squaring the distances is “questionable at the best” (p. 922). They suggested v
= 1 be used at all times, but Janson and Olsson’s (2001) modified agreement statistic uses
v =2 and their main argument for the more conventional metric is the ease of
interpretation. As the reader will see later, for the binary streams of intercoder agreement
data when unitizing discrete content, the choice of v does not matter, but for continuous
content, v = 2 is sometimes the only choice due to the vast simplification of the

mathematics.
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Using the MRBP layout, Berry and Mielke (1988) provided a re-formulation of
Cohen’s « for the categorization phase of content analysis and a natural extension of x to
multiple coders, and to higher levels of measurement. In brevity, the original cross-
classification layout of x is transformed into a b-block by g-treatment MRBP layout. For
example, assuming that two observers independently coded each of the g units into one of
the » categories, the familiar cross-classification layout of ¥ would be an » by r table with
the entries in the table being the proportions of cross-classifications in particular cells.
The MRBP layout, on the other end, would be a 2-block by g-treatment table with a total
number of (2g) r-dimensional response vectors in each one of the (2g) cells of the table.
The number of coders corresponds to the number of blocks, and the number of treatments,
or in other words — the number of columns, represents the number of units categorized or
equivalently, the number of coding decisions made. Suppose that the number of
categories —  equals 3, then in this case, the response vectors would all be 3-by-1 in
dimension. If the first coder classified the first unit into the first category, the response
vector associated with that coding should be stored in the cell at the intersection of the
first column (or equivalently, treatment or unit) and the first row (or equivalently, block
or coder), and it would take the form of (27 0 0) . If the second coder classified this
unit into the second category, the response vector should be entered in the cell
corresponding to the first treatment of the second block (meaning, the first unit of the
second coder), and this vector takes the form of (0 27 0)’ . Generally speaking, if a
coder classified a unit as belong to the ith category, the ith element in the response vector
would be 2'1/2, and all other elements would be 0. The relative location of 27 in a

response vector indicates the category into which the coder has assigned the particular
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unit. And the choice of using 2™ not just any other number, is to ensure the nominal
level property of «, i.e. the distance between the two vectors will be zero if the two coders
agree, and one if the two disagree.

The extended measure of agreement is given by the equation
K=1-0, /iy, )
where O, denotes observed disagreement and 45 denotes expected proportion of
disagreement by chance. Because MRBP is a based on permutation, [ is found by
permuting the data within each block across treatments. In other words, 1, is found by

permuting the data from each coder across units. In the original experimental design

context, the definition of f/; reflects the addition of blocks because as a general principle

in randomized blocks designs, from which MRBP originated, randomization does not
occur across blocks, and therefore in constructing a permutation test, data cannot be
permuted across the blocks. This is also implied by the matching distribution in
elementary probability theory, which forms the underlying probabilistic model of « (see
Hubert, 1977). The maximum number of permutations is M = (g!)b — the total number of
permutations within each block, or stated equivalently, for each coder’s responses, to the
bth power. Such a formulation makes the extension of x to multiple coder situations very
easy.

Generally, assuming b coders independently categorized g units of content, let xy;,
denote the elements in an r-by-1 response vector from coder i for unit p, where k=1, ...,
r,i=1,...,b,and p=1, ..., g, the disagreement (distance) function between coder i and

coder j for the pth unit is given by
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v/2
Aip,jp = I:Z (xcip Ko 2] > )
c=1

and the observed disagreement over all distinct pairs of coders and over all g units is

given by

-1

b g
p=li<j

where i < denotes the sum over all i and j such that 1 <i <j < b, and basically this is to

ensure that the response from a coder is not compared with itself.

Assuming that the M permutations are equally probable, a theoretical definition of

chance disagreement is given by
ps=M"y 3, (5)

However, one does not need to enumerate all M permutations to arrive at [/;, a more
efficient working formula for p; is available due to the fact that the first moment of the

permutation distribution is a constant multiple of g2 elementary calculations (see Mielke
& lyer, 1982).
Using similar notations as in equations (3) and (4), then the distance function

between the ith coder for the pth unit and the jth coder for the gth unit is given by

- v/2
A’P’«/q = !Z (xC"P ~ Xejq 2} ) (6)
c=1

and the following equation determines the chance disagreement
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b 1g ¢
— 2
p=l q=l i<j
where i <j denotes the sum over all i and j such that 1 <i <j <b. Equation (7) seems to
be quite complicated. However, it is nothing but the average distance between any
distinct pairings of response vectors. As Hubert (1977) suggested, this is also an existing
result in the matching distribution literature. Berry and Mielke (1988) have named their

extended x coefficient as R, and have established the equivalence of this statistic with

other known measures.
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CHAPTER 5

THE PROPOSED FAMILY OF
COEFFICIENTS OF CO-TERMINATION

MRBP Reformulated x

It is assumed that two coders are present, and that they have broken a 7-word
sentence into 3 units. The analysis of intercoder agreement, using discrete terms, may be
expressed as a 2 block by 6 treatment MRBP table. Recall that the number of coders is
equal to the number of blocks, and the number of coding decisions made is equal to the
number of treatments (columns) in the MRBP table. If this sentence is of the form
ABCDEFG, where each letter represents a word, decisions of choosing between “0” — not
to break and “1” — to break, at possible breaking points (the spaces between two
consecutive words) are repeated by each coder for six times. Therefore, the entries in the
MRBP table are just 0’s and 1’s, and the data is summarized in Table 1.

The actual codings in Table 1 are: A/BCDE/FG for coder 1, and A/BCDEF/G for
coder 2. If the usual cross-classification layout of x is used, the design should be a 2 by 2
table, and it would look like Table 2. The diagonal entries represent the agreement
between the two coders in choosing the breaking points (cell 1-1) or non-breaking points

(cell 0-0), and the off-diagonal entries are their disagreement.

24



Cohen’s k can be calculated from Table 2 using the usual way.

P -P _(1/6+1/2)—[(1/3x1/3)+(2/3x2/3)] _2/3-5/9 _
1-P 1-[(1/3%1/3)+(2/3%2/3)] 1-5/9

K 25

For the computation of x using MRBP layout, let x;, represent the value (0 or 1)
from the cell corresponding to the ith coder and pth possible breaking point, where i =
I,....,b,and p=1, ..., g, the symmetrical MRBP distance function — equation (6) —

between any two cells x;, and x;j, in a table similar to Table 1 can be reduced to

Dy g = [(x,.p _qu)z]ma (®)
note that the choice of v does not matter here because the values in the cells are either 0
or 1.
Using equations (2) — (8), a reformulated x can be expressed as one minus the

ratio between O

obs

— the observed disagreement — and f/; — the expected disagreement.
U5 can be found by averaging over all J ’s obtained from permuting data within blocks.

Table 3 is an example of a possible permutation. For instance, in Block 1, the 1s
originally in the 1st and 5th treatments are swapped into the 2nd and 3rd places. For this

permutation & = 4/6 = 2/3.

To summarize, O

0

.. can be calculated using equation (4) as J,, = 6'1Z;:1A1 pap =

(0+0+0+0+1+1)/6 = 333, and p; = 3672 3" A, =16/36= 444, and K is

1p.2q
1 —.333/.444 = .25, which is exactly the same as using the cross-classification table, but
from equations (2) — (8), one can see that the MRBP approach is inherently multivariate

and can be readily extended to multiple coders unitizing the same segment of content. A
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GAUSS (Aptech Systems Inc., 1997) procedure that implements formulae (2)-(8) is in
Appendix B.

One of the problems with this approach, as the reader probably has already
noticed, is an underestimate of reliability. Without calculating any statistics, a visual
examination of the codings: A/BCDE/FG for coder 1, and A/BCDEF/G for coder 2,
reveal the fact that the codings are not much different yet the agreement measure
indicates that it is merely 25% agreement above chance, a value too low by any standards.
In the next part of this paper, a small simulation study shall be presented to demonstrate
the conservativeness of x, but for now, a remedy shall be presented in the next section
and it makes use of the notion of continuous content.

A second problem of significance to the use of « for discrete type of content is the
choice of the underlying basic element. This is especially pertinent when the content is
not inherently discrete, and one wishes to transform the length readings to binary streams
and use « to calculate reliability.

Restricted Permutation and A Measure Based on Unit Lengths

One can re-express the data in Table 1 using unit lengths (defined as the number
of elements in the units) and the result is summarized in Table 4. For instance, the “1” in
the first cell of Table 1, which means an observed break at the first possible breaking
point, translates into a unit of length 1. This is the first unit given by coder 1, and
therefore it is entered into the first cell of Table 4. As another example, the “1” in the
fifth column of Table 1 indicates another break by coder 1, and the 4 elements between
this break and the first break form unit 2. This is apparently a unit of length 4. Asa

consequence, in Table 4 the second entry for coder 1 is 4. For the moment, the reader is
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asked to ignore the lines corresponding to the “Cumulative” lengths. The usefulness of
these identities will become clear later.
By simply applying equations (2) — (7) on the two coders, one can obtain the

reliability coefficient fairly easily in this case. Withv=1, K =1-9,, /u;=1—-.667/
1.778 =.625. Withv=2, K =1-0,, /l;=1—.666/5.111 = .87. Using length readings,

the agreement index increased quite a bit. However, the direct application of MRBP is
quite problematic given that coders usually do not agree on the number of units either.
Not only are the computational formulae thus rendered useless, there are conceptual
problems as well.

Consider the coding, as summarized in Table 5: The first coder came up with 7
units for this continuous piece of content and the second one came up with only 6. One
can easily think of replacing the one missing cell in the last column with zero and then
apply the computational formulae, but a theoretical problem arises because when the
permutation within the second block is conducted, the imputed zero may appear, for
example, in the 3rd column. It makes little sense because one can hardly imagine a unit
of length zero in between two other units of positive lengths. After all, the
communication content is a sequential stream that does not stop until the endpoint.

This problem can be offset by using a restricted permutation approach, i.e., by
fixing the trailing zero(s), should there be one or more missing cells in the last a few
columns when conducting the within block permutations. Therefore, the total number of
possible permutations in the given example is only (7!)(6!) = 3,628,800, instead of (7!)* =
25,401,600, as the zero x,7 will remain un-permuted. More generally, the total number of

permutations is given by
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MZIiIgj!, ©)

and when all g;’s are equal, equation (9) is the same as (g!)’, where g refers to the
maximum number of units given by one or more coder(s) for a particular segment. This
change from the original MRBP approach essentially reflects the usefulness of the so-
called reference subsets described in Edgington (1987). If the set of (g!)b data
permutations is taken as the primary reference set, then the computation of /5 under the
condition when all gjs are equal would be using the reference distribution for the general-
null hypothesis, whereas when not all gjs are equal, and thus equation (9) yields a smaller
value than (g!)b, the computation of (/5 would be comparable to the test of a restricted
null hypothesis (see Edgington, 1987, pp. 305-316).

When not all gjs are equal, the direct expression of (s is quite cumbersome, thus
it is useful to introduce the following computational expressions for clarity and computer
implementation. A GAUSS (Aptech Systems Inc., 1997) procedure that implements
these formulae is in Appendix C. Let (x;,) denote a row of g; unit length readings from
coder i, e.g. arow in Table 5, where p =1, ...g;, let M be given as in equation (9), and let
the between cell distance — A, be defined as in equation (8), then for any choice of v,

define the following equations:

M

GO, jp=—"", (10)
max(g, g ;)

CGi Y= _ min(g; g;)

(6, 7)) =M|1 maxz 2 ) | (11)
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ifg >g;

12
ifg <g, (12

Wi, j) = {i.
J

& g
DGN=Y.YA,,. (13)

p=l g=1
&y(i.j) &y (i.j)

D, (G, ) = Z(xw(i,np -0 = quvz(z‘,np ; (14)
p=l p=1

E@, j)=C\(0,))D, (0, j) +C, (0, )D, (0, )) (15)

b -1
1 :Mzﬂ 2B, (16)

where i <j denotes the summation over all i and j such that 1 <i<j<b. Given the
considerable modification to Mielke and Berry’s (1988) original reformulation of «, it is
tempting to give this new coefficient a different name, say, k'. For the data in Table 5,

withv=1, K'=1-9

| Ms=1—3.486/5.265=.338. Withv=2, K'=1-0,, /;=1-
23.811/50.174 = .525. However, this restricted permutation approach is not without
problems of its own. The major drawback is that the use of lengths sometimes fails to
capture the hidden disagreements.

Consider an example (Table 6) in which two coders are supposed to unitize an
audio clip by writing down the length of each unit — expressed in minutes and seconds —
presumably using a timing device such as a stopwatch. Unlike the previous example in
Table 4, where the use of length entails a transformation of the binary streams into length
readings, these length readings are truly “continuous.” One can easily see from the table

that the total length of the content segment is 2 minutes, and both coders unitized the

content segment into three units. The numbers in the parentheses are the length readings
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expressed in terms of seconds. A direct application of equations (8) — (16) is possible
and would yield K'=1-9,, / t;=1-10/23.333 =571 forv=1,and K'=1-0,,, / 5=

1 — 150/ 850 = .824, for v= 2. The problem, however, lies in the length of unit 2. Both
coders came up with the length of 30 seconds for the second unit, but apparently, the
starting and ending points for unit 2 are not the same across coders. For coder 1, the
second unit refers to the 30 seconds starting from 1 minute 15 seconds, while for coder 2,
the second unit refers to the 30 seconds of content starting from 1 minute. This is an
artifact of using length readings directly. In other words, a unit-by-unit comparison of
the two coders’ length readings can some lead to artificially high agreement values.

One may wonder whether the reformulated x could provide an easy remedy for
this problem, but it turns out that applying the reformulated & to continuous length data
requires a transformation that is even more problematic. The transformation of the length
data into a form susceptible to analysis using K entails the selection of the length or size
of a baseline unit, or using a familiar discrete content term — an element, which has a
profound impact on the computation of k.

Tables 7 and 8 summarize the transformed binary stream for the length readings
in Table 6. The baseline unit for Table 7 is 5 seconds, and that for Table 8 is 15 seconds.

By applying equations (2) — (8), K =1-0

obs

[ fs=1—-.174/ .159 =—.095 for Table 7,
and K =1-90,,, / ts=1-0.571/ 0.408 = — .400 for the data in Table 8. Such a large

discrepancy clearly demonstrates the fact that applying the reformulated « to continuous
length data is a potentially very bad practice because two researchers using the same data

set and the same computational formulae would necessarily arrive at two different values
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of «, unless they choose the same baseline unit that defines the possible breaking points.
In fact, if researchers would like to inflate their reliability coefficients, they may simply
choose to define 1 second as the baseline unit. The smaller the baseline unit is, the higher
k will be (A simple demonstration is included in Appendix D).

The coefficient based on lengths, on the other hand, is unaffected by the selection
of the length of units. The values in the parentheses in Table 6 are expressed in terms of
seconds. If the baseline unit is changed to 5 seconds, the value of k' will still be the

same as before: K'=1-9,, /;=1-2/4.667=.571 forv=1,and K'=1-9,, / i;=1-

6/ 34 = .824, for v=2. In general, the value of k' will remain invariant under linear
transformations of the dataset. This invariance property is true for all length-based
measures. Given the problem with reformulated « , it seems that a length-based measure
that seeks a “moment-by-moment” comparison (Conger, 1985) rather than a unit-by-unit
comparison of the lengths should be better that the existing methods. And such is indeed
true for the method to be presented in the next section as a remedy for the limited
applicability of K and the inability of k' to capture hidden disagreement such as unit 2 in
Table 6.
A Measure Based on Cumulative Lengths

By borrowing the concept of empirical cumulative distribution function (ECDF)
from elementary mathematical statistics, one can envision the disagreement between two
coders when unitizing continuous content as the difference between two cumulative
length functions. A plot should help illustrating this point. Figure 1 plots two cumulative
length functions for the dataset in Table 5. In Figure 1, the dotted line corresponds to

coder 1 and the solid line corresponds to coder 2. When coder 2 has used up all available
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content, the cumulative length is 70.0 and it remains at 70.0 regardless of how many
missing cells there may be. Thus the conceptual problem of having to impute zero(s) for
one or more missing cells in the last a couple of columns due to unequal number of units
is no longer a concern here, because the cumulative length function is a step function that
has its maximum equal to the total length of the content segment. In a sense, for a coder
who ends up having more units than the other coders, the representation using cumulative
lengths is straightforward, i.e., all the other step functions max-out earlier than the one
with more units. Using cumulative lengths also solves the problem of k' directly. In
Table 6, even though the two coders agreed on the length of unit 2, the cumulative
lengths are still off by 15 seconds, reflecting the fact that they came up with different
starting points for unit 2. In addition, the simulation study to be reported in the next part
of this paper will demonstrate that this measure based on cumulative lengths provides
some improvement over K and k' in terms of correcting for the underestimate of
agreement in co-termination.

Using similar notations, let x;, represent the value from the cell corresponding to
the ith coder and pth unit, where i =1, ..., b,and p =1, ..., uax, Where Zuay 1s the
maximum number of units given by the coders. One may consider g, = max (g1, g2, ...,
g»), and the squared distance (v = 2) between two cumulative lengths corresponding to

cells x;, and x;, in a table like Table 5 or Table 6 can be expressed as

» P ? » 2
Acip,jp = ink - ijk = Z('xik =X | s (17)
k=1 k=1 k=1

and the overall observed disagreement is

32



) b -1 Emax
35, =(2J DB (18)

i<j p=l
where i <j denotes the sum over all i and j such that 1 <i<; <b.

To find the expected disagreement, three steps are involved: 1) conduct a
restricted permutation of the unit length data within each block, still holding the missing
cells due to the unequal number of units as fixed; 2) for each permutation, calculate
cumulative lengths for each cell, 3) use equation (17) and (18) to find the disagreement
for that particular permutation, 0°. Here the total number of permutations — M — is the
same as given in equation (9). One can imagine conducting an exhaustive permutation to
iterate through the M possibilities, and then the expected disagreement is found by
dividing the sum of all the 0°’s by M, just as in equation (5).

The squared distance is used in equation (17), simply because when the
differences are squared, the complex distance function between two cumulative lengths
can be written as a linear combination of the squared distances between simple unit
lengths and some cross-product terms. The end result is a solution that provides the exact

expected disagreement, i.e. the exact first moment of the permutation distribution of J, ’s,

without having to know the value of every element in the distribution. Such a vast
reduction in computation is not available for metric Euclidean distances. As a diversion
from the main theme, it is worth noting here that for a permutation-based statistic, one
can either generate 1) an exact reference distribution, 2) an approximate reference
distribution based on random sampling from all possible permutations, or 3) a moment
approximation of the reference distribution using the exact values of lower order

moments. The first approach is generally computationally infeasible under most
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circumstances, and the use of the second approach also requires a large number of
repeated random samples in order to achieve stability in the result, otherwise, researchers
using the same dataset would necessarily produce different results due to sampling
variability. When working under the traditional hypothesis-testing framework, the third
approach is often more efficient than the first two approaches, and it is the basis of Berry
et al.’s (1976) Pearson Type III distribution approximation to the null distribution of the
MRPP test statistic, from which the reformulated K, k' and this new measure based on
cumulative lengths are derived. Computational formulae for finding the expected
disagreement without actually having to conduct permutations are presented as equations
(19) — (27). These formulae are still quite cumbersome, but a GAUSS (Aptech Systems
Inc., 1997) procedure that implements this method is available in Appendix E.

Let (x;,) and (xj,) denote two rows of unit length data, not cumulative length data,
from coders 7, and j, where p, ¢ =1, ..., g;, and 1 <i<j <b. Without loss of generality, it
is further assumed that g; is always greater than or equal to g;. In practice, this restriction
is not a concern because the distance function is symmetric and thus one can easily swap

the two row vectors to make g; and g; satisfy the condition specified. Let A, . —the

ip.jq
squared distance between two lengths (cells) — be given as in equation (8), and M be
given as in equation (9), define the following identities:
y & g &
Dl(i,j)=gZ[(gi+1—m)ZZAip,jq}. (19)

iSj m=1 q=1 p=l

For g; > 2, define:
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D,(i.))= JZZ[(g,H DY@, } @0)

gzgj(gz _1)(g] _1) r=1 s=r+l q=1 p=l n>q m#p

and for (g; — gj) > 1, define:

o M 8i 8i
D == Y {(g,-ﬂ—m)ZA,-p,,m}, 21)
i m=g;+1 p=l

D,(i, j) = Z Z !(gi +1—s>ZZZ(A,-p,,qu,,S>“}, (22)

l J r=1 :g.+1 q=1 p=l m#p

D))= m s Z Z[(g,ﬂ S>ZZ<AW ] (23)

=g+l s=r+l =l gq#p
The expected disagreement can be readily calculated using the following equations
E(i, j) = Dy, ) +w,(8,)D; (i, /) + 1,8, 8, XD i, ) + Dy, j) + Dy iy )} (24)
where y,(g;) and y,(g;,g;) are two indicator functions of the form:

( )_1 ifg, 22 25)
4 gj 0 1fg]<2

1 ifg >g;

26
0 ifg, =g; (26)

\vz(gi,g,)={

and finally

P

Then the new measure « * is given by

K*=1-05 /5. (28)
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The numerical results for the example datasets in Tables 4 and 5 are as follows:

K*=1-0;

obs

/us=1-1/10.222=.902, and k*=1-7;

obs

/us=1-143.43/551.197 = .74.
For the dataset in Table 6, if 1 second is chosen as the baseline unit, the result is

K*=1-0;

obs

/s =1—-450/1700=.735. If 5 seconds is chosen as the baseline unit, the

resultis K*=1-0°

obs

/s =1—18/68=.735. If 15 seconds is chosen as the baseline

unit, the result is still kx*=1-09¢

/My =1—2/7.556=.735. Itis easy to see that K * is
invariant under linear transformations.

Tests of Significance

Because « is merely a linear function of J,

obs >

a test of significance of K is

equivalent to the test of J,, . Mielke and Iyer (1982) gave formulae for the first three
moments of the MRBP null distribution, and using the mean and variance, J,,, can be
standardized and the associated probability of J,,, can be approximated via a Pearson

type III distribution (see Mielke and Berry, 2001). This p-value is associated with the
test whether k is significantly different from zero. There is no random sampling
assumption involved, and this test of significance is non-asymptotic. Each one of the n
segments in a reliability study would therefore have a p-value, and by looking at the set
of p-values, the researcher should be able to infer whether the coders’ overall agreement
is due to chance or not.

A test of significance may be conducted for the coefficient that uses the
cumulative lengths via a random sample of all possible permutations (see Edgington,

1987). The exact moments of the null distribution can be derived along the same lines as
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equations (19) — (23), but algebra would be very tedious. Generally one is better off
leaving the computation to a powerful computer rather than relying on one’s analytical
skills when the time devoted to solving a particular problem analytically is exponentially

greater than what would take for a computer to obtain an answer approximately.
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CHAPTER 6

SIMULATION STUDIES

The simulation studies reported here are primarily intended for demonstration
purposes. First, it would be ideal to show that the newer methods, k' and k *, especially
the latter, which is based on cumulative lengths, are better than the original MRBP
reformulated « in terms of being less conservative. If one of the newer methods can
handle discrete data as well as K or better than « , and at the same time have the
capability to handle continuous length readings, which k cannot deal with, it should be
the method of choice. Second, there are some unknowns about k' and « *’s underlying
permutation structure to obtain expected disagreement by permuting lengths rather than
by permuting the binary streams of breaking points.

Simulation I: Performance comparisons

The main purpose of this set of simulations was to examine the relative
performance of the four competing methods, namely, «, k' (v=1), k' (v=2), and K *,
under various conditions. The factors manipulated were: 1) number of coders (2, 4, 6), 2)
length of the content segments (10, 15, 20, 30), 3) number of units, or equivalently, the
number of breaking points plus one (4 to 17, depending on the length of the content), and

4) the proportion of unit boundaries set to be in agreement across coders (0, .5, and .8).
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In a sense, this last manipulation creates a “theoretical” value of agreement, and in a
sampling experiment, whether a method is conservative or not is determined by
comparing the long run average of the agreement coefficients computed using such a
method with the theoretical value. Entries in Table 9 to Table 12 are based on the results
from a sampling experiment program written in GAUSS (Aptech Systems Inc., 1997).
Due to the exponentially increasing amount of computation time, the number of
replications for each condition was set to a mere 400, a number usually considered too
small, but in this case the performance patterns are quite distinguishable. The program
made use of the procedures listed in Appendices B, D, and E. It was assumed that the
coders agreed on the number of units contained in any content segment, so what was
generally left random was the choice of breaking points in the content streams. Recall
that when the numbers of units are equal across coders, co-termination takes a strong
form. The data generation process mimics this by creating a series of random binary
streams. The number of streams is equal to the number of coders. The length of content
is equal to the length of the binary stream plus one. The number of breaking points in the
content segment is equal to the number of 1’s in the stream. Setting common unit
boundaries is a little trickier. For illustrative purposes, in a bivariate (2-coder) case, the
two coders are assumed to be co-terminus for a certain number of units, say, n, with n
determined by the proportion of units in agreement. If this proportion is zero, no special
handling is needed. If the proportion is above zero, n 1’°s shall be inserted into a random
binary stream to create agreement. Note that the data generation process deliberately
disadvantaged «' and k * because the content is inherently discrete, which can be

handled quite well by « .
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The first line in each one of the cells in Table 9 corresponds to the mean values of
the four competing intercoder agreement indices when there are 2 coders and the unit
breaking points are completely random, i.e. the proportion of common breaking points is
set to zero. In general, regardless of how many breaking points there are or how long the
content segment is, all methods yielded long run average coefficients close to zero, which
is exactly what is expected of an unbiased method of computing agreement. The
standard deviations of the empirical distributions of the four coefficients are also reported
for the conditions in Tables 9 to 11. Note that the variability of x * is generally larger
than that of k<, which is not a surprise because 1) kK * is defined in a squared Euclidean
space, whereas K utilizes metric Euclidean distance, while this difference is irrelevant to
computation of the mean values, it does affect the variance of the distributions; 2)
previous literature on the null distributions of MRPP family of statistics (Mielke, 1979)
as well as simulation results not reported here indicates that the distribution of « * is
almost invariably skewed to the negative direction, and a few outlying observations in a
skewed distribution will certainly inflate the variance to a great extent.

In Table 10, the proportion of common breaking points is set to 50%. Here the
difference between the four methods starts to emerge. Except for those conditions in
which the number of breaking points is small (e.g., 4), the only method that consistently
kept the agreement coefficient close to the theoretical value (.5) across the board in
almost every condition is K *.

Table 11 is constructed in much the same way as Tables 9 and 10, only that the
theoretical value of agreement is set to .8. The pattern observed in Tables 9 and 10

carries on to Table 11, and the clear winner is again k *. The more interesting finding in
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Table 11 is that the theoretical agreement is set to a value considered by many (e.g.
Krippendorff, 1980) as a rule of thumb to judge whether the coding process is reliable or
not. This kind of decision rule has very strong impact on the final outcome of any
particular content analysis. Oftentimes, after a researcher has determined that the
intercoder agreement coefficient is below .8 (or using some other similar standards), he
or she would go back to re-train the coders or use every means possible to improve the
coding scheme, and hope that in the next round of reliability assessment, the agreement
index will go above .8. Under the current context, if a researcher applied K to compute
an intercoder agreement index for the unitizing phase, he or she is likely to find that it is
well below what is commonly expected. Indeed, for the data in Table 11, 80% of all
breaking points are set to be in agreement for the two coders, and yet in none of the
conditions the value of k is close to .8.

For four coders, « * is still better than &, but the advantage of K * over K is not
as great as seen for the two-coder case. In fact, in some cases kK * is even worse than « .
A similar trend exists in the six-coder case. The findings are summarized in Tables 12
and 13.

What can be inferred from the simulations reported here is that for two coders, K
is indeed biased downward, and k * is clearly the method of choice, but k starts to pick
up when the number of coders increases. These findings are for discrete type of content
only, and the combinations of lengths and number of breaking points examined here are
perhaps not very representative of what researchers may encounter in the “real world,” so
making generalizations is quite difficult. However, kK * does possess the potential to best

capture the disagreement of co-termination and its use is encouraged.
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Simulation II: What to permute?

In determining the expected disagreement for all length-based measures,
including k' and k *, the within-block permutations are conducted using the length data.
If it is fair to say that the permutation of the unit lengths is almost inevitable for truly
continuous length-readings, such as the data in Table 6, the permutation of lengths
transformed from binary streams is quite questionable. Take the unit lengths in Table 4
as an example. After all, the lengths contain the same information as the binary streams
in Table 1, so why not conduct the permutations using the binary streams instead of the
lengths? Conceptually it is very simple: each permutation of the underlying binary
streams shall be re-expressed using lengths, and the length difference or the cumulative
length difference shall be taken and recorded to form a permutation distribution from
which the expected difference can be calculated.

The answer to this question is not very straightforward. It is certainly possible to
conduct permutation on the underlying binary streams, but there are several limitations to
this approach. First, expressions of the exact expected disagreement for length-based
measures are no longer available (at least for now) if what is permuted is the underlying
binary stream. The derivation of the exact first moment of the permutation distributions
of MRBP based statistics primarily utilizes the fact that the distances are calculated from
the original data that are being permuted. Any transformation of the original data will
result in extremely complex solutions. For example, when « * is defined as a function of
the discrepancies between the cumulative lengths the expression of its expected
disagreement is extremely complex, but it is still possible to write out those equations

because the cumulative lengths is only a very simple linear combination of the unit
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lengths. With the transformation of binary streams to unit lengths, it is already quite
impossible to describe the exact nature of such a transformation mathematically, not to
mention deriving a solution to find the expected disagreement. Second, simulation data
reported in Table 14 show that the long run average of expected disagreement using
length permutations will converge to the value obtained via permuting the underlying
binary streams.

In Table 14, the long run expected disagreement of the two versions of «', which
are based on permuting lengths rather than the underlying binary streams are reported.
The data generation process is the same as for Simulation I, and the number of
replications was set to 1,000. The Model I columns are the expected disagreement
obtained via permuting the binary streams and they are invariant over the 1,000
replications, so in other words, given the length and the number of breaking points, the
expected disagreement is completely determined for Model I permutations. Model II
refers to the permutations of lengths, and it is conceivable that for any particular trial in
those 1,000 trials, the permutation distribution is a subset of Model I permutation
distribution. Overall, the two converge, as can be seen in Table 14: the Model I and

Model II column values are very close.
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CHAPTER 7

DISCUSSION

The assessment of co-termination in the unitizing phase of content analysis is an
important issue for communication researchers. The agreement of unitizing focuses on
how independent coders choose breaking points at various places in a segment of textual
content. It is assumed that segments are of two types, discrete and continuous. Discrete
segments are composed of a finite number of elements, and unitizing a discrete segment
is an operation of grouping elements into units, with the unit defined as a subset of a
segment. For continuous content, it is hard to define what an element is, but it is easy to
deal with the length of units, most notably expressed in terms of time.

Coefficients of co-termination under various circumstances were considered in
this thesis. Generally speaking, for genuinely discrete data, the MRBP reformulated K
can be used directly. The number of coding decisions in this case is the number of
elements in the discrete segment minus one, and the reliability data would be binary
streams of 0’s and 1°s. This approach, however, often results in underestimates of
agreement, as shown by the simulation studies. Furthermore, this approach cannot be
easily extended to deal with continuous content segments. Applying K to continuous

content entails a transformation of the length readings using some pre-defined baseline
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unit, and because the value of K would change depending on the size of the baseline unit,
K is not invariant under linear transformations of the length dataset. The coefficients
that are based on lengths, on the other end, can handle the continuous type of content
quite well. It is perhaps better to state that they were inspired by the MRBP layout rather
than MRBP itself, and with some modification, the new coefficient K' can handle the
situation of coders disagreeing on the number of units contained in the segment, but the
inherent problem is that it cannot detect a form of hidden disagreement as exemplified in
Table 6, due to that fact that it is comparing length readings in a unit-by-unit fashion.

The nice property associated with the length-based measures is that they are invariant
under linear transformations of the data, which is absent in MRBP reformulated K. The
last coefficient — K *, that makes use of cumulative lengths is not only less conservative
than most other indices, it can also solve the inherent problems associated with K and K'
because the comparison of cumulative lengths is a moment-by-moment comparison of
the codings from pairs of coders. Simulation studies were carried out and it was found
that K * was indeed closer to the theoretical value of agreement than other indices in
most situations, especially with 2 coders. The second simulation also justified the
permutation structure of the methods based on the permutation of lengths rather than the
permutation of the underlying binary streams. Depending on the nature of the study,
researchers now possess a family of intercoder agreement indices for the unitizing phase
of content analysis, based on the Multi-response Randomized Blocks Permutation
procedure. One can imagine that a researcher 1) take a sample of segments from the pool
of content, 2) obtain the reliability data for unitizing from a group of independent coders,

3) for each segment, calculate the co-termination index by using one of the methods
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discussed in this thesis, and 4) finally, the overall co-termination is found by averaging
the co-termination indices over all segments.

As an endnote, I would like to point out that all the indices of co-termination
discussed thus far share the same guideline, i.e. they all seek some form of chance-based
correction of the observed agreement. The formulation of all these methods share the
form of 1 — D, / D., where D, is the observed disagreement and D, is the expected
disagreement by chance. A conceptually much simpler extension of the K * method may
take the form of 1 — D, / D,,, where D,, is the maximum disagreement between pairs of
coders given the lengths data available. In terms of the MRBP permutations, this D,, is
maxima of the permutation distribution of cumulative lengths. Graphically, this can be
thought of as the maximum discrepancy between the two cumulative length functions.
When the observed disagreement is zero, the agreement index is 1, and when the
observed disagreement is equal to the maximum disagreement, agreement is 0. In most
cases, the observed discrepancy between the two cumulative length functions falls
somewhere in between the extremes, and the value of agreement calculated in this way
will necessarily be larger than a chance corrected index such as K *. At present, however,

the properties of this new index still remain to be uncovered in future research.
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APPENDIX A

Permutation tests represent the “ideal” situations where one can derive the exact
probabilities rather than approximate values obtained from common probability
distributions, such as the ¢, /" and )(2 (Mielke & Berry, 2001, p. 1). Carrying out
randomization or permutation of the collected data rather than relying on the often times
unreasonable assumption of random sampling or normality not only make a test more
data-dependent, but also enhances the practicability of a test, as the practitioners have full
control over the stochastic component of the statistical model.

Assuming an r-dimensional & group design with the combined sample size
equaling N, and group sizes equaling n; where i =1, ..., k, and Y n.= N, let (x1y, ..., X,)
denote the r-dimensional responses where /=1, ..., N, and let S;, where i =1, ..., k
denote the k groups of responses, or using the terms of Mielke and Berry (2001), the
“exhaustive partitioning” of the N responses into k disjoint sets (p. 12). The basic
formulation of the MRPP family of statistics involves the definition of a symmetric

distance function of the form

v/2
AI,J :|:Z(xcl _ch)2j| s
c=1
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as a measure of the multivariate distance between the two observations x; and x;. For
notational simplicity both the “excess group” and the truncation of distance to a preset
maximum value shall not be discussed in the present paper (for details see Mielke &
Berry, 2001). The choice of v is arbitrary, but the two choices v =1 and v = 2 seems most
reasonable. When v = 1, the distance is metric Euclidean distance and this distance
function has nice theoretical properties of being robust and much less influenced by
outliers (Mielke & Berry, 2001). When v = 2, the distance is defined in a non-metric
squared Euclidean space because the triangle inequality fails in this analysis space, and it
is known through both theoretical and simulative studies that this choice leads to a less
robust test (Mielke & Berry, 1994). However, the choice of v =2 yields an easier
explanation of the test results, because many popular tests essentially involve the use of
squared distance.

The MRPP statistic can be thought of as a weighted average of within-group
distances. Intuitively, a smaller value of the MRPP statistic would mean higher
concentration within each a priori classified group (Mielke, 1984, p. 815). Such an
interpretation is also in line with the geometric interpretation of the conventional
multivariate analysis of variance (see Edgington, 1987, pp. 190). Therefore, in terms of
detecting between group differences, a smaller value of the MRPP statistic is necessarily
“better.”

The MRPP statistic is given by
k

0, =) C&

i=1

where C; is the group weight fori =1, ..., k, and 3, C, =1, and
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1<J
is the average within-group distance for all distinct pairs of responses in the ith group.

y(D)J is an indicator function given by

x) 1 ifx, 05,

X =

V90 e, O,

The choice of group weights is discussed in Mielke (1984), but C;=n;/ N, and C; = (n, —

1)/ (N — k) are two sensible choices for v=1 and v = 2, respectively.

The formal test of significance of J,

obs

is carried out by assuming the null

hypothesis of equal probabilities being placed upon each one of the

N!

i=1
possible permutations of the N responses into the £ groups, each permutation yielding a

realized value of J. The probability value associated with 0, is a ratio of the number
of J s being smaller than or equal to J,,, and M, formally written as P (J,,,) = {#
5 < Jobs } / M.

Because M is usually a very large number even for relatively small sample sizes,
the exact reference distribution of the MRPP statistic is difficult to obtain, therefore,
Mielke, Berry and Johnson (1976) have provided efficient computational methods for the
first three cumulants of the MRPP null distribution, upon which a moment approximation
using Pearson type III distribution may be utilized. Generally this approximation is

excellent. For details please refer to Mielke & Berry (2001).
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APPENDIX B

The following is a GAUSS (Aptech Systems Inc., 1997) procedure that
implements the multi-coder version of k. The input is a b-coder by g-unit matrix of
binary streams similar to Table 1. The output is a 3-by-1 vector, call it resultv, with the
first element being the observed disagreement, the second element being the expected
disagreement (un-averaged), and the third element being the denominator of expected

disagreement. So agreement is simply 1 — resultv[1]/( resultv[2]/ resultv[3]).

proc kappa(x);
| ocal delta, distance, tenp, x1, x2, nl, n2, distancel, factorl, resultm
delta = 0;
di stance = O;
nl = col s(x);
n2 = ni;
for idxl (1, rows(x)-1, 1);
for idxJ (idxl+1, rows(x), 1);
x1 = x[idxl,.]";
x2 = x[idxJd,.]";
delta = delta + sunt(abs(x1l-x2));
di stancel = 0;
for i (1, nl, 1);
for j (1, n2, 1);
di stancel = distancel+abs(x1[i] - x2[j]);
endf or;
endf or;
di stance = di stance + distancel;
endf or;
endf or;
resultm= zeros(3,1);
resultnf1l] = deltal/ni;
resultnf 2] = distance/nl;
resultnf3] = ni;
retp(resultny;
endp;
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APPENDIX C

The following is a GAUSS (Aptech Systems Inc., 1997) procedure that
implements the method «'. The input is a b-coder by g-unit matrix similar to Table 5.
The output is a 3-by-1 vector, call it resultv, with the first element being the observed
disagreement, the second element being the expected disagreement (un-averaged), and
the third element being the denominator of expected disagreement. So agreement is

simply 1 — resultv[1]/( resultv[2]/ resultv[3]).

proc kappaprime(x, v);
local M delta, distance, tenp, x1, x2, nl, n2, distancel, factorl, factor2,
resultm
M = prodc(sunc((x .gt 0)')!);
delta = 0;
di stance = O;
for idxl (1, rows(x)-1, 1);
for idxJ (idxl+1, rows(x), 1);
x1 x[idxl,.]";
X2 x[idxJd,.]";
nl sunc(x1l .gt 0);
n2 sunc(x2 .gt 0);
if (n1lt n2);
temp = nl;
nl n2;
n2 t enp;
temp = x1;
X1l = x2;
X2 = tenp;
endi f;
x1 = x1[1: n1];
x2 = x2[1:n1];
delta = delta + sunt(abs(x1l-x2)"v);
di stancel = O;
for i (1, n1, 1);
for j (1, n2, 1);
di stancel = distancel+abs(x1[i] - x2[j])"v;
endf or;
endf or;
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factorl = M(1/nl);
factor2 = M(1-n2/nl);
di stance = distance + di stancel*factorl+sunc(x1”v)*factor?2;
endf or;
endf or;
resultm= zeros(3,1);
resultnf1l] = delta/(rows(x)!/(rows(x)-2)!/2);
resultnf 2] = distance/ (rows(x)!/(rows(x)-2)!/2);
resultn3] = M
retp(resultny;

endp;
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APPENDIX D

First, assuming that there are only 2 coders, the total length of the content
segment is N, and the coders agreed on the number of units in the content — denote it by a.
In order to transform the continuous content into binary streams to reflect the breaking
points and non-breaking points, the length of the baseline unit is first chosen to be n. As
a consequence, there are altogether (N / n — 1) elements in the transformed binary streams,
and the number of 1’s in the two streams are both (a — 1), and the number of 0’s in the
two streams are both (N / n — a). It is straight forward from equation (7) that the excepted
average disagreementis2 (a— 1) (N/n—a)/ n’. Denote the observed average
disagreement with J / n, it is again straightforward from equation (2) thatx=1-0/[2 (a
~“D)(N/n-a)/n]l=1-6/{Qa-2)[(N-an)/n*}. Itis easy to see that as n decreases,
the identity (N — an) / n* increases, because N and a are constants regardless of how many
basic elements there are in the binary stream. The result is therefore the decrease in the

length of the baseline unit is directly associated with an increase in «.
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APPENDIX E

The following is a GAUSS (Aptech Systems Inc., 1997) procedure that
implements the method based on cumulative lengths, x *. The input is a b-coder by g-
unit matrix similar to Tables 5 or 6. The output is a 3-by-1 vector, call it resultv, with the
first element being the observed disagreement, the second element being the expected
disagreement (un-averaged), and the third element being the denominator of expected

disagreement. So agreement is simply 1 — resultv[1]/( resultv[2]/ resultv[3]).

proc kappastar(x);
local delta, distance, M tenmp, x1, x2, nl, n2, distm tenpdistm part2,
indexm minor, mnorv, factor, resultm
delta = 0; distance = O;
M = prodc(sunc((x .gt 0)')!);
for idxl (1, rows(x)-1, 1);
for idxJ (idxl+1, rows(x), 1);
x1 x[idxl,.]";
X2 x[idxJd,.]";
nl = sunt(x1 .gt 0);
n2 sunc(x2 .gt 0);
if (nllt n2);
tenp = ni;
nl = n2;
n2 = tenp;
temp = x1,
X1l = x2,
X2 = tenp;
endi f;
x1 = x1[1:nl];
x2 = x2[1:n1];
for i (1, nl, 1);
delta = delta + (sunc(x1[1l:i])-sunc(x2[1:i]))"2;
endf or;
distm = zeros(nl, nl);
for i (1, nl, 1);
distn{.,i] = x1[.,1] - x2[i,1];
endf or;
for j (1, n2, 1);
di stance = di stance+sunc(vec(distn{.,1:n2]72))*(1/ nl/n2)*M(nl+l-j);

57



endf or;
if (n2 ge 2);
for i (1, n2-1, 1);
for j (i+1, n2, 1);
tenpdi stm = distn{., 1:n2];
for col (1, n2-1, 1);
for row (1, nl, 1);
i ndexm = zeros(nl, n2);
i ndexn{row,.] = ones(1,n2);
m nor = delif(tenpdistmindexm;
m norv = tenpdistnirow,col].*vec(mnor[.,col +1:n2]);
factor = 4*(1/n1)*(1/n2)*(((n2-1)*(nl-1))~(-1))*M(nl+l-j);
di stance = di stance + factor*sunc(m norv);
endf or;
endf or;
endf or;
endf or;
endi f;
if ((nl - n2) ge 1);
for j (n2+1, nl1, 1);
di stance = distance + suntc(distn{.,j]"2)*(1/nl)*M(nl+l-j);
endf or;
for i (1, n2, 1);
for j (n2+1, ni1, 1);
tenpdi stm = distn{., 1:n2];
part2 = distn].,j];
for col (1, n2, 1);
for row (1, ni1, 1);
i ndexm = zeros(nl, 1);
i ndexnfrow] = 1;
m nor = delif(part2,indexm;
m norv = tenpdi stnfrow, col].*m nor;
factor = 2*(1/nl)*(1/n2)*((nl-1)~(-1))*M(nl+1l-j);
di stance = di stance + factor*sunc(m norv);
endf or;
endf or;
endf or;
endf or;
for i (n2+1, nl1l-1, 1);
for j (i+1, nl, 1);
tenpdistm= distn{.,i];
part2 = distnf.,j];
for row (1, nl, 1);
i ndexm = zeros(ni, 1);
i ndexnfrow] = 1;
m nor = delif(part2,indexm;
m norv = tenpdistn{row .*m nor;
factor = 2*(1/nl)*((nl-1)"(-1))*M(nl+l-j);
di stance = di stance + factor*sunc(m norv);
endf or;
endf or;
endf or;
endi f;
endf or;
endf or;
resultm= zeros(3,1);
resultnf1l] = delta/(rows(x)!/(rows(x)-2)!/2);
resultnf2] = distance/(rows(x)!/(rows(x)-2)!/2);
resultn3 =M
retp(resultny;
endp;
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APPENDIX F

Treatments

Blocks (Coders) 1 2 3 4 5

Table 1
Example dataset: MRBP layout
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Coder 1

Coder 2 1 0 Sums
1 1/6 1/6 1/3
0 1/6 172 2/3
Sums 1/3 2/3 1
Table 2

Cross-classification layout of data in table 1
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Treatments

Blocks (Coders) 1 2 3 4

Table 3
A possible permutation of the data in table 1
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Treatments

Blocks (Coders) 1 2 3
1 1 4 2
Cumulative 1 1 5 7
2 1 5 1
Cumulative 2 1 6 7
Table 4

Unit lengths: transformation of data in table 1
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Treatments

Blocks (Coders) 1 2 3 4 5 6 7

1 10.3 19.7 10.1 9.8 4.6 5.0 10.5

Cumulative 1 ~ 10.3 30.0 40.1 49.9 545 59.5 70.0

2 10.2 19.8 8.5 12.0 9.5 10.0 -

Cumulative 2 10.2 30.0 38.5 50.5 60.0 70.0 70.0

Table 5
Unit lengths: unequal number of units
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Treatments

Blocks (Coders) 1

1 1:15 (75)

Cumulative 1~ 1:15 (75)

0:30 ( 30) 0:15( 15)

1:45 (105)  2:00 (120)

2 1:00 (60)

Cumulative 2 1:00 (60)

0:30 ( 30) 0:30 ( 30)

1:30 ( 90) 2:00 (120)

Table 6

Unit lengths: hidden disagreement for unit 2
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Treatments

Blocks

1 23 45 6 7 8 910111213141516 17 1819 20 21 22 23
(Coders)

1 0000O0OO0OO0OO0O0O00O00O0O0OO0OO0OT1O0OO0OO0OO0OO0OTLI®O0OO

2 00000OO0OO0OO0OO0OO0OO0O1O0O0OO0O0O0O0O0O1O0O0O0OO0OO

Table 7
Transformation of data in table 6 using 5 seconds as a baseline unit
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Treatments

Blocks (Coders) 1 2 3 4 5 6 7

Table 8
Transformation of data in table 6 using 15 seconds as a baseline unit
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Methods

Length Units K K'(v=1) K' (v=2) K*

10 4 -.022 .017 016 -.016

SDs 342 352 528 781

10 6 -.006 .004 .009 .008

SDs 362 316 404 746

10 8 -.022 -.036 -.040 -.025

SDs 346 330 361 737

15 4 025 .035 .048 048

SDs .266 324 502 725

15 10 010 -.007 -.002 -.053

SDs 285 253 313 703

20 4 -.004 -.009 -.007 -.011

SDs 228 326 505 734

20 10 -.023 -.018 -.020 -.004

SDs .230 207 302 704

20 16 016 .024 022 .050

SDs 241 226 .249 759

30 4 -.003 -.002 .001 .002

SDs 202 327 524 759

30 17 018 .003 .003 .086

SDs 190 161 224 819

Overall Means -.001 .001 .003 .009
Table 9

Performance comparison for 2 coders: 0 % unit boundaries in agreement
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Methods

Length Units K K'(v=1) K' (v=2) K*
10 4 234 150 .189 275
SDs 288 406 571 .696

10 6 204 147 .179 344
SDs 310 365 468 .601

10 8 127 .103 .119 273
SDs 373 .366 401 710

15 4 338 206 245 411
SDs 210 371 553 672

15 10 172 142 .165 405
SDs 257 281 355 581

20 4 .359 248 307 436
SDs 173 .369 .559 .692

20 10 276 187 211 476
SDs .192 237 326 411

20 16 137 118 132 359
SDs 253 235 285 .688

30 4 322 .199 234 400
SDs .130 367 .539 .620

30 17 245 182 204 498
SDs 158 176 247 378

Overall Means 241 .168 200 388

Table 10

Performance comparison for 2 coders: 50 % unit boundaries in agreement
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Methods

Length Units K K'(v=1) K' (v=2) K*

10 4 573 419 510 .667
SDs .190 457 548 430

10 6 .640 484 568 753
SDs 184 400 453 330

10 8 361 293 330 .504
SDs 367 424 456 .666

15 4 579 393 471 .691
SDs 118 430 S17 362

15 10 438 327 387 716
SDs 179 303 366 281

20 4 .600 398 490 701
SDs .089 432 520 348

20 10 .590 424 502 793
SDs 105 286 351 184

20 16 375 .289 327 .678
SDs 217 281 344 381

30 4 .632 397 476 730
SDs 071 421 507 324

30 17 516 368 427 .802
SDs 110 219 281 .190

Overall Means 530 379 449 .703

Table 11

Performance comparison for 2 coders: 80 % unit boundaries in agreement
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Methods

Length K K'(v=1) k' (v=2) K*
0 % unit boundaries in agreement
10 .000 .003 .004 -.002
15 .004 .006 .004 .014
20 -.006 -.002 -.005 -.013
30 -.002 -.013 -018 -.017
Total -.001 -.002 -.003 -.005
50 % unit boundaries in agreement
10 210 101 115 178
15 253 120 .140 277
20 250 124 .145 285
30 308 146 .169 328
Total 255 123 142 254
80 % unit boundaries in agreement
10 527 352 398 475
15 .586 359 423 .620
20 581 363 425 651
30 .608 357 423 .696
Total 576 358 417 610

Table 12
Performance comparison for 4 coders
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Methods

Length K K'(v=1) k' (v=2) K*

0 % unit boundaries in agreement

10 .000 .002 .001 .003
15 -.001 .001 .004 013
20 .000 -.002 -.002 017
30 -.001 -.001 -.002 -.014
Total -.001 .000 .000 .005

50 % unit boundaries in agreement

10 210 102 118 139
15 256 116 134 214
20 246 128 147 269
30 310 155 179 357
Total 256 125 145 245

80 % unit boundaries in agreement

10 526 350 394 459
15 583 .349 408 610
20 579 353 412 .649
30 .607 352 413 691
Total 574 351 407 .602

Table 13
Performance comparison for 6 coders
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K'(v=1) K' (v=2)
Length Units Model I Model 11 Model I Model 1T
3 2 0.500 0.500 0.500 0.500
4 2 0.879 0.889 1.312 1.333
5 2 1.237 1.249 2.512 2.496
5 4 0.375 0.375 0.375 0.375
6 2 1.581 1.599 3.950 3.994
6 4 0.660 0.660 0.908 0.899
7 2 1.936 1.945 5.832 5.833
7 4 0.905 0.915 1.533 1.575
7 6 0.278 0.278 0.278 0.278
8 2 2.273 2.286 7.848 8.002
8 4 1.160 1.156 2.418 2.400
8 6 0.497 0.499 0.629 0.635
10 2 2.948 2.956 13.271 13.288
10 4 1.632 1.616 4.561 4.495
10 6 0.881 0.878 1.594 1.588
10 8 0.399 0.400 0.484 0.486
15 2 4.600 4.637 31.846 32.421
15 7 1.384 1.385 3.659 3.679
15 12 0.405 0.406 0.520 0.529
30 2 9.597 9.642 139.497 139.681
30 12 1.792 1.797 6.272 6.343
30 22 0.565 0.565 0.909 0.905
50 2 16.640 16.337 408.768 400.369
50 12 3.448 3.446 22.378 22.336
50 22 1.592 1.597 5.270 5.282
50 32 0.820 0.817 1.675 1.651
50 42 0.327 0.326 0.434 0.432
Table 14

Comparison of expected disagreement

72



APPENDIX G
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Figure 1
Hllustration of two cumulative length functions for data in table 5
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