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ABSTRACT 
 
 
 
 

The assessment of intercoder agreement in the unitizing phase of content analysis 

has long been overlooked.  In particular, little attention has been paid to the issue of co-

termination, which refers to the level of agreement among pairs of coders to break a 

given segment of content at the same points into smaller units.  Although the kappa 

agreement coefficient can be used for the purpose of summarizing the agreement of co-

termination, it has some inherent limitations.  A new family of coefficients based on the 

Multi-response Randomized Blocks Permutation procedure is presented and numerical 

results are given. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
 

Content analysis is a quantitative research methodology widely employed in the 

field of communication.  Berelson’s (1952) often cited definition of content analysis as an 

objective, systematic, and quantitative endeavor to describe the content of 

communication messages clearly endorsed the usefulness of content analysis to 

communication scholars.  Given the importance of a certain research method, one would 

expect research reports using such a method to be well represented in communication 

journals, and such is indeed true for content analysis.  In a recent “content analysis of 

content analyses” of articles published in Journalism and Mass Communication 

Quarterly between 1971 and 1995, Riffe and Freitag (1998) located 486 full-length 

reports using content analysis, comprising of roughly one fourth of the total number of 

articles published.  They demonstrated an increasing trend of utilizing and featuring 

content analysis in communication research over the past quarter of a century, and they 

argued, as electronic databases and archives became more accessible to researchers and 

communication practitioners, this trend was likely to continue.  An earlier study by 

Wilhoit (1984) suggested that more than 20 percent of theses and dissertations listed in 

Journalism Abstracts used content analysis.  Moffett and Dominick (1987) reported a 
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similar result that 21 percent of the articles published in Journal of Broadcasting between 

1970 and 1985 employed content analysis.  Fowler (1986) confirmed the centrality of 

content analysis in the field of communication by showing that 84.1 percent of master’s 

level research methods courses in journalism and communication graduate programs 

included content analysis.  I also conducted an informal “content analysis of content 

analyses” published by Journalism and Mass Communication Quarterly between 1999 

and 2001 and found that 43 papers used content analyses methodology, representing over 

33% of all the research reports published in this journal. 

As Krippendorff (1980) succinctly remarked, making “inferences from essentially 

verbal, symbolic, or communicative data” has always been at the heart of content analysis 

(p. 20).  In order for scientific inferences to be valid, one must first ascertain the 

reliability of the research instrument.  Just as chemists could ill-afford an uncalibrated 

balance in a chemical experiment, one could hardly imagine living a life in the 

communication scholarship without assessing the reliability of content analysis.  Of 

course, if a stream of messages is to be analyzed by a well-designed computer program, 

one can probably worry less about reliability, but in most instances, if not all, content 

analyses still require much human labor, and thus the errors of human analysts become 

almost inevitable. 

The standard process of content analysis, as described in most introductory 

communication research methods textbooks (e.g. Frey, Botan, & Kreps, 2000; Stewart, 

2002; Wimmer & Dominick, 1994) essentially involves a coding process.  Guetzkow 

(1950) observed that any transformation of qualitative data into a form “susceptible to 

quantitative treatment constitutes coding” (p. 47).  He further emphasized that the coding 
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process could be broken down into two related phases: that of separating the qualitative 

material into units, and that of classifying the unitized data into established categories.  

The former is often termed unitizing, and the latter categorizing.  The two processes are 

integral elements of content analysis yet require different strategies of reliability 

assessment.  One term that needs a little clarification is categorizing.  In many practical 

situations the coded units are indeed later classified into categorical sets, but this is not 

necessarily true.  Coded units may be rated on ordinal, interval or ratio scales in 

subsequent coding procedures.  The term categorizing will remain in use in the 

paragraphs to follow, but without any implication of merely categorizing the coded units 

into qualitative (nominal) sets. 

In the coding process, usually a set of human coders or judges are involved.  The 

assessment of reliability of the content analysis thus becomes an assessment of the 

reliability of the coders, even though this is not a sufficient condition for the entire 

content analysis study to be reliable, the coding process is of such importance that low 

intercoder reliability would render all subsequent analyses meaningless, because low 

intercoder reliability would suggest that the obtained results were largely not replicable 

(Krippendorff, 1980, p. 131).  Ideally, the coders should be trained to rate or judge the 

content independently and yet to arrive at the same ratings in precisely in the same 

manner as intended by the coding scheme. 

Intercoder reliability is established when the same pieces (possibly a very large 

number) of content yield same ratings from independent coders using a common data 

language (Krippendorff, 1980, p. 133).  Formally, the term intercoder reliability should 

be more appropriately termed intercoder agreement (cf. Lombard, Snyder-Duch, & 
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Bracken, 2002), but the two terms will nevertheless be used interchangeably in the pages 

to follow since given the present context the meaning of the two terms is not much 

different.  Another distinction that should be made is the “depth” at which the messages 

are to be coded.   Berelson (1952) clearly intended content analysts to deal only with the 

manifest content, i.e. the information “as is,” without invoking additional mental efforts 

of the coders to discover the latent content or the implied meaning.  However, unless the 

research question can be easily answered by simply counting the number of words in a 

newspaper article or the number of occurrences of the names of candidates in pre-election 

news coverage – which can be quite easily done with a computer – the coding process 

will often require the coders to make subjective judgments.  Under those circumstances, 

readers of the research would demand the researchers to demonstrate that “those 

judgments, while subjectively derived, are shared across coders,” which again confirmed 

the practical necessity of establishing intercoder agreement in content analysis (Potter & 

Levine-Donnerstein, 1999, p. 266). 

Having illustrated the importance of intercoder agreement, the current status of 

correctly using and reporting intercoder agreement measures in communication journals 

is quite alarming.  Riffe and Freitag (1997) found that only half of the 486 articles 

published in Journalism and Mass Communication Quarterly between 1971-1995 

reported intercoder reliability.  A recent study by Lombard et al. (2002) searched 

virtually all content analysis articles indexed in Communication Abstracts from 1994 to 

1998 and of the 200 articles they found, only 69% ever mentioned intercoder reliability, 

and usually the methods for computing intercoder reliability were not reported.  Of the 

44% of all articles that did report the names of the specific methods, more than half of 
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them relied on liberal indices that are not chance-corrected, such as percent agreement, 

which seriously undermined the effort of computing and reporting reliability coefficients.  

I found that of the 43 content analyses published in Journalism and Mass Communication 

Quarterly from 1999 to 2001, only 65% reported using some form of intercoder 

reliability measurement.  More than one third of the articles that reported reliability 

coefficients were still using Holsti’s (1969) method, which is not chance-corrected.  In 

addition, two papers employed Pearson’s correlation coefficient r when assessing the 

agreement of categorical coding, which is also a very poor practice that can hide huge 

proportions of disagreement. 

Given the current undesirable state of affairs of appropriately using and reporting 

intercoder agreement indices in the communication scholarship, the next section shall 

explicate intercoder agreement in the context of a two-stage coding process, namely, 

unitizing and categorizing.  The importance of co-termination when unitizing textual data 

shall also be presented. 
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CHAPTER 2 
 
 

CO-TERMINATION 
 
 
 
 

When Guetzkow (1950) wrote about unitizing and categorizing, he presented a 

convincing case that in order for the entire content analysis to be reliable, one has to 

regard the assessment of the overall intercoder agreement as a two-stage process.  Ideally 

one should compute agreement measures for unitizing first and then calculate the 

agreement indices for categorizing, with the “overall” reliability referring to the 

combined intercoder agreement in both stages. One should note that this overall 

reliability does not always have to be expressed in quantitative terms.  It is possible that a 

particular content analysis consists merely of categorizing existing units, and then this 

two-stage notion would not be relevant.  However, there are times when unitizing is a 

must, and under such circumstances, the intercoder agreement of unitizing becomes 

crucial.  This paper does not attempt to develop any new agreement indices for the 

categorizing phase, as there are established methods already.  Instead, the aim is on how 

the agreement of unitizing can be better summarized, and this goal cannot be achieved 

without first understanding the complexities of intercoder agreement in the unitizing 

phase. 
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The agreement of unitizing focuses on how independent coders choose breaking 

points at various places in a segment of content, be it a sentence, a paragraph, an article, 

or an entire television show.  The segments are assumed to be clearly delineated from one 

another and are usually naturally given.  This assumption is not unfair because most of 

the qualitative content that can serve as segments for coding has unambiguous endpoints.  

For example, if a newspaper article is chosen as a segment, where it ends is crystal clear.  

It is further assumed that segments are of two types, discrete and continuous. 

Discrete segments are composed of a finite number of elements.  Defining what is 

an element is very difficult, and in a sense it is an inherent flaw of discrete segments, 

because 1) it depends on the research question, 2) how detailed the researcher would like 

the content analysis to be, and 3) for two researchers using same piece of content segment, 

if the element is defined in different ways, the two will necessarily come up with 

different intercoder reliability coefficients.  But for now, examples should at least help 

illustrate what constitutes an element.  Consider, for instance, a sentence from an online 

chat transcript: “Apparently, from what I read, they haven’t identified the dead body yet.”  

It is convenient to define a word – anything in between two spaces – as an element, and 

this is a segment containing 12 elements.  Thus defined, unitizing becomes an operation 

of grouping elements into units.  Generally speaking, a unit is a subset (not necessarily a 

strict subset) of a segment.  In the context of discrete content, a unit may contain one or 

more elements, and a segment may contain one or more units.  As a concrete example, 

Schaefer (1999) analyzed news reports of the State of the Union Address in the New 

York Times at the assertion-level, and according to his definition, a paragraph in an 

article may contain multiple assertions, so it is easy to infer that a sentence, in this case, 
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can serve as an element.  Intercoder disagreement arises when coders define the units 

differently.  Suppose that a paragraph contains 5 sentences, and there are two judges 

coding this paragraph.  The first coder grouped the first two sentences into an assertion 

while the other grouped the first three into one assertion.  It is easy to see that they are in 

disagreement. 

The idea of an element is not applicable to continuous segments.  For instance, a 

researcher may want to unitize audio/video recordings.  It is probably hard to define what 

an element is within a continuous stream of audio/ video recording, but it is easy to deal 

with the relative length of a unit, perhaps expressed in terms of time.  One can imagine 

the coder using a stopwatch to record the lengths of units, and intercoder disagreement 

occurs when the coders come up with different length readings.  For instance, suppose 

two coders are involved in unitizing a 10-minute segment of audio recording into 2 units, 

and one of the coders defined the first unit to be 5 minutes long, while the other defined it 

to be 6 minutes long.  Apparently the two coders are in disagreement for this continuous 

segment. 

The idea of length is widely applicable and one can essentially re-express the 

discrete type of unitizing using lengths readings as well.  The basic idea is to define the 

length of a discrete unit as the number of elements it contains.  Consider this example:  

ABCD, a discrete segment of 4 elements, is to be coded by two judges by putting slashes 

at the breaking points.  Judge 1 gave: A/B/CD, and judge 2 gave: A/BC/D.  They both 

came up with three units for this segment, and the reliability data, using discrete terms, is 

a set of binary streams: 1 1 0, for judge 1; and 1 0 1 for judge 2.  The number of entries in 

the binary streams is the number of elements minus 1, representing the maximum number 
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of possible breaking points.  In this case, there are altogether 3 possible breaking points, 

between A and B, between B and C, and between C and D.  The 1’s in a stream signify 

observed breaking points.  For example, the first coder broke between A and B, which is 

the first possible breaking point in the segment, so the first entry in the binary stream is 1.  

Using the same logic, since the second coder did not break between B and C, the second 

entry in the binary stream corresponding to this coder is a zero.  The same data can be 

expressed in terms of lengths: 1 1 2 for judge 1; and 1 2 1 for judge 2.  The numbers 

correspond to the number of elements in a particular unit, and the total number of entries 

equals the number of units.  For instance, the first unit for judge 1 contains one element – 

“A,” therefore the corresponding length reading is 1.  Take the second unit for judge 2 as 

another example.  The length is 2 because “BC” contains 2 elements. 

Having defined the terms, it is natural to introduce the concept of co-termination 

and review what Guetzkow (1950) recognized as the two kinds of errors of unitizing a 

stream of content: (1) failure to agree on the breaking points between the units, and (2) 

failure to attain the same number of units (p. 54).  Co-termination, or co-terminability, a 

term introduced but not clearly defined in Guetzekow (1950), refers to the agreement 

among pairs of coders to break a given segment of content at the same points into the 

same number of smaller units.  Note that this definition essentially contains two 

components: (1) the agreement on the breaking points, and (2) the agreement on the 

number of units.  Such a definition of co-termination is said to be in a strong form 

because there will be perfect agreement of unitizing among coders when the strong form 

of co-termination is achieved.  It is the necessary and sufficient condition for a weaker 

form to exist because, for example, it is possible that a pair of coders agree partially on 
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how to choose the breaking points and yet at the same time do not agree on how many 

units there are in the segment of content.  Suppose two coders were instructed to break an 

article into smaller units containing one or more paragraphs.  The two coders started out 

in perfect agreement as to how to group the paragraphs into units up to a certain 

paragraph after which things started to fall apart.  As a result, the numbers of units were 

different, and certainly by definition of strong co-termination, they failed to achieve 

agreement.  However, one has to acknowledge that at least the two agreed somewhat in 

the beginning, and a good agreement measure should give partial credit to such 

agreement.  It is conceivable that any measure of agreement based on the strong form of 

co-termination would necessarily be a conservative one and thus the existence of a weak 

form of co-termination is not an idea plucked out from the thin air.  

The weak form of co-termination essentially depends on the sequential nature of 

content streams, i.e. one can only start unitizing from the beginning of a segment and 

proceed as the stream goes.  Of course, going backwards from the end is not impossible, 

but this is makes little difference because one can then define the end as the beginning.  

Expressed in discrete terms, the weak form of co-termination between two-coders is 

defined as choosing breaking points so that at least the two coders grouped one set of 

elements in the same manner.  Consider the previous example again: a segment – ABCD, 

with 4 elements, and 3 coders were to unitize it.  The result happened to be as follows:  

coder 1 – A/B/CD, coder 2 – AB/C/D, and coder 3 – A/B/C/D.  There are three distinct 

pairs of coders: 1 vs. 2, 2 vs. 3, and 1 vs. 3.  Clearly, none of the pairs achieved co-

termination if the strong definition is used.  Coders 1 and 2 gave the same number of 

units but were not co-terminus.  Although coders 1 and 3 gave different numbers of units 
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(3 and 4, respectively), they actually attained the weak form of co-termination for the 

groupings of A and B into the first and second unit.  For coders 2 and 3, they achieved 

co-termination for C and D.  The basic conceptualization of the measurement of co-

termination would be to employ the strong definition when the coders agree on the 

number of units and to use the weak form when the numbers of units are different.  

Henceforth, it shall be implied that the strong definition is used whenever the numbers of 

units are the same; otherwise, the weak definition will be utilized. 

It is worthy of pointing out that according to Hubert (1977) there are three 

definitions of agreement when the number of coders goes beyond two: DeMoivre’s 

definition, target-rater definition, and pair-wise definition.  The first one refers to the 

unanimous agreement of all coders, and the second one refers to the joint agreement of all 

other coders with a “target-rater” who provides the “true” rating, and the third, which is 

also what is implied in the definition of co-termination, refers to the agreement between 

any pairings of coders.  It is easy to see that DeMoivre’s definition tends to yield the most 

conservativeness.  Most of the popular intercoder agreement indices that can handle three 

or more coders use the pair-wise definition, as does the new coefficient to be proposed in 

subsequent sections. 

Having defined what co-termination is, it is not difficult to infer that the mere 

agreement on number of units does not imply co-termination.  As to the relative 

importance of the two, Guetzkow (1950) remarked that the failure to achieve “co-

terminability” is less likely to lead to confusions and low intercoder reliability in the 

subsequent categorizing of the coded units (p. 55).  There is absolutely nothing wrong 

with this argument, because how far reliability assessment should go is a practical matter 
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related to the nature of the specific study at hand.  If the unit boundaries are relatively 

clear, or if slight inconsistencies in co-termination do not significantly affect the 

subsequent use of the coded units, one could worry less about co-termination and focus 

more on achieving a high level of agreement on the number of units.  However, there are 

certain times when disagreement in co-termination may lead to different interpretations 

of the same data, even though the number of units are the same across coders.  For 

instance, if two coders were to divide the sentence “Apparently, from what I read, they 

haven’t identified the dead body yet,” and the coders agreed that it contained two units, 

but the first coder put the division mark right after “apparently,” while the second put it 

after “read.”  The interpretation of the two units would necessarily be different, because a 

stand-alone “apparently” would suggest confirmation, while “apparently, from what I 

read” would refer to the clear inferences that the chat user could make from what he or 

she read.  This example might be a very trivial one.  What is important is to realize that 

the mere agreement on number of units does not automatically imply reliability of 

unitizing.  Still using the previous example, suppose that the first coder divided the 

sentence after both “apparently” and “read,” and the second coder only divided the 

sentence after “apparently,” the number of units for the two coders are 3 and 2, 

respectively, and there seems to be much disagreement between the two, but in fact they 

did achieve co-termination, at least for the first unit.  Given such results, at least the 

interpretation for the first unit – “apparently,” is unambiguous.   
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CHAPTER 3 
 
 

POPULAR INDICES OF INTERCODER AGREEMENT 
 
 
 
 

This section briefly examines the five most widely used intercoder reliability 

indices in the communication literature and explicates their limited applicability to the 

measurement of co-termination in the unitizing phase of content analysis.  Most of them 

are intended for bivariate nominal level coding.  For discrete unitizing reliability data 

(binary streams) between two coders, Cohen’s κ can be used, but only to a limited extent.  

For continuous content, no current indices are directly applicable. 

Percent Agreement and Holsti’s Method 

This is perhaps the most easily understood method for calculating intercoder 

agreement for the categorizing phase.  It is simply the “percentage of all coding decisions 

made by pairs of coders on which the coders agree” (Lombard, et al., 2002, p. 590).  This 

is not a chance corrected measure, and Krippendorff (1980) illustrated how chance could 

artificially inflate percent agreement with a neat example (pp. 133-135).  In general, 

using percent agreement is a very poor practice that can artificially inflate agreement. 

Holsti (1969) proposed a variation of the percent agreement measure that does not 

require the two coders to be coding the same pieces of content.  His formula can be 

expressed as 
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Agreement = 
21

2
NN

N
+

, 

where N is the total number of coding decisions the two coders agreed upon, and N1 and 

N2 are the numbers of coding decisions by the first and the second coder, respectively.  

When two coders are coding the same pieces of content, this formula is the same as 

percent agreement.  This is still not a chance-corrected measure and it suffers from the 

same drawbacks as percent agreement.  Even though some prominent statisticians have 

argued against the use of chance-corrected measures (e.g., Goodman & Kruskal, 1954), 

supporters of chance-corrected measures “far outweigh detractors” (Berry & Mielke, 

1988, p. 922). 

Scott’s π 

This is a chance-corrected index first introduced by Scott (1955) primarily in the 

context of coding qualitative data obtained from surveys.  In its original form, this index 

is only applicable to nominal level coding and accommodates only two coders, although 

it is worth mentioning that Craig (1981) has given an extension of Scott’s π to the case of 

multiple coders.  Scott’s π’s basic formulation is the ratio )1/()( eeo PPP −− , where Po is 

the proportion of observed agreement, and Pe is the proportion of agreement expected by 

chance.  Usually it is assumed that two coders independently classify each of the n units 

into one of c established categories.  The layout for computing π essentially involves the 

construction of a two-way cross-classification table, with entries in the table being the 

proportion of observations falling into one of the c-by-c cross-classifications.  Scott’s π is 

the first coefficient that considers the expected agreement as a function of both the 

number of categories and the marginal distributions, but its assumptions are over 
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simplifications of the reality.  The π coefficient assumes that the column and row 

marginal distributions are identical to the “true” proportions, and that the two coders 

share the same marginal distributions.  In other words, when oP  is unambiguously given 

by the sum of the diagonal elements of the c-by-c cross-classification table, eP  is taken to 

be the sum of the squares of “true” marginal proportions.  Given the context of survey 

research, where π originated, the former assumption is not unreasonable, as the “true” 

proportions are usually obtainable, and in some situations this assumption has given 

Scott’s π a distinct edge over similar coefficients like Cohen’s κ, because π can still be 

computed when the two coders have coded different pieces of the content, while 

computation of κ requires that the pair of coders have coded the same units (Craig, 1981, 

p. 261).  However, it is the latter assumption of π that is particularly problematic.  As 

Cohen (1960) pointed out, “one source of disagreement between a pair of judges is 

precisely their proclivity to distribute their judgments differently over the categories” (p. 

41).  Furthermore, the “true” proportions are not always available outside of the field of 

survey research.  Making such unrealistic assumptions only hinders the usefulness of the 

π coefficient.  Within communication, however, π is perhaps still the most widely used 

measure of intercoder agreement.  In the informal content analysis of research reports in 

Journalism and Mass Communication Quarterly, I found 28 papers that reported some 

form of reliability assessment.  10 of them used π, which is as popular as the Holsti’s 

(1969) method. 

Cohen’s κ  

Cohen’s (1960) κ is defined in much the same way as Scott’s π, in that both 

coefficients require the construction of a c-by-c cross-classification table to calculate the 
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agreement index.  The κ coefficient, and its variants for bivariate nominal level coding 

takes the familiar form of a ratio between observed and expected proportions, 

)1/()( eeo PPP −−=κ , with oP  given by the sum of the diagonal elements of the c by c 

cross-classification table, and eP  is found by first multiplying each column marginal with 

its associated row marginal and then taking the sum of the products.  Note that the eP ’s 

are calculated differently for κ and π, and for bivariate nominal level coding, this is the 

only difference between the two coefficients.  One can easily see that κ takes into account 

the difference in the two coders’ marginal distributions when calculating the expected 

agreement. 

Cohen’s κ has enjoyed continued development by psychological methodologists.  

Cohen (1968) himself introduced a weighting procedure that accounts for the differential 

severity of disagreements.  Fleiss (1971) gave its extensions to the case of multiple raters.  

Fleiss and Cohen (1973) established the equivalence of weighted κ and the intra-class 

correlation coefficient.  Hubert (1977) introduced the underlying mathematical model of 

matching distributions in probability theory to users of the κ coefficient.  Fleiss, Nee, and 

Landis (1979) worked out κ’s asymptotic variance.  Conger (1985) extended it to 

measure agreement over time for continuous nominal scales.  However, the κ coefficient 

is not as popular in communication as it is in other social sciences such as psychology. 

Krippendorff’s α 

When the number of coders is exactly two with nominal level coding assumed, 

Krippendorff’s (1970) α coefficient is identical to Scott’s π (Krippendorff, 1980, p. 138).  

What makes the α coefficient more appealing than its competitors is that it offers an easy 
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extension to measure the agreement of higher levels of measurement and of multiple 

coders.  Recall that Guetzkow (1950) described the two kinds of errors in unitizing 

textual data.  It appears that Krippendorff’s α coefficient may well serve the purpose of 

calculating the intercoder agreement of the number of units of a given segment of content.  

Krippendorff’s α is not very widely used by communication researchers either.  I found in 

the “content analysis of content analyses” of the 28 articles in Journalism and Mass 

Communication Quarterly between 1999 and 2001, only three used Krippendorff’s (1970) 

α and three used Cohen’s (1965) κ, as compared to the ten articles using Holsti’s (1969) 

method. 
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CHAPTER 4 
 
 

MULTI-RESPONSE RANDOMIZED BLOCKS LAYOUT  
AND INTERCODER AGREEMENT 

 
 
 
 

This section describes some of the details of the Multi-response Randomized 

Blocks Permutation procedure (MRBP) relevant to the assessment of agreement.  MRBP 

is a variation of the Multi-response Permutation Procedure (MRPP) (Mielke, Berry, & 

Johnson, 1976).  It is first introduced by Mielke & Iyer (1982) as a supplement to MRPP.  

Both MRPP and MRBP are based on the general principle of permutation tests (for 

details of MRPP, please refer to Appendix A; for an in depth treatment of permutation 

tests, consult Edgington, 1987).  In its original formulation, MRBP defines a b-block by 

g-treatment randomized blocks experiment and within each block there is only one r-

dimensional observation per treatment, taken as n = 1 for each cell.  The reader can think 

of the MRBP layout as a b-row by g-column table, and of course, there are altogether (bg) 

cells in this table.  In each cell, there is only one observation.  This observation can be a 

multivariate / multidimensional response vector (r > 1) or it can be a scalar (r = 1).  

MRBP makes use of the distances between these multidimensional response vectors 

when constructing the test statistic. 
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Let xI’= (x1I, …, xrI), and xJ’= (x1J, …, xrJ) be the transposes of two r-by-1 

vectors of multivariate responses.  The symmetric distance function between the two 

multidimensional response vectors – xI and xJ – is given by 
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where xcI and xcJ are the corresponding elements in the r-dimensional response vectors.  It 

is easy to see that the distance between two multivariate responses is a power function of 

the sum of the squared differences between each element and therefore the choice v gives 

rise to a variety of distance functions.  The value of v determines the analysis space of the 

test and choice is somewhat arbitrary, but the most widely used two are v = 1 and v = 2, 

which corresponds to metric Euclidean space (the triangle inequality holds) and non-

metric squared Euclidean space (the triangle inequality fails).  Some of the most widely 

employed tests such as the t-test, ANOVA, and their multivariate counterparts – 

Hotelling’s generalization of Student’s t, and Bartlett-Nanda-Pillai trace test in MANOVA 

all use squared Euclidean analysis space.  Berry and Mielke (1988) pointed out that the 

choice of squaring the distances is “questionable at the best” (p. 922).  They suggested v 

= 1 be used at all times, but Janson and Olsson’s (2001) modified agreement statistic uses 

v = 2 and their main argument for the more conventional metric is the ease of 

interpretation.  As the reader will see later, for the binary streams of intercoder agreement 

data when unitizing discrete content, the choice of v does not matter, but for continuous 

content, v = 2 is sometimes the only choice due to the vast simplification of the 

mathematics. 
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Using the MRBP layout, Berry and Mielke (1988) provided a re-formulation of 

Cohen’s κ for the categorization phase of content analysis and a natural extension of κ to 

multiple coders, and to higher levels of measurement.  In brevity, the original cross-

classification layout of κ is transformed into a b-block by g-treatment MRBP layout.  For 

example, assuming that two observers independently coded each of the g units into one of 

the r categories, the familiar cross-classification layout of κ would be an r by r table with 

the entries in the table being the proportions of cross-classifications in particular cells.  

The MRBP layout, on the other end, would be a 2-block by g-treatment table with a total 

number of (2g) r-dimensional response vectors in each one of the (2g) cells of the table.  

The number of coders corresponds to the number of blocks, and the number of treatments, 

or in other words – the number of columns, represents the number of units categorized or 

equivalently, the number of coding decisions made.  Suppose that the number of 

categories – r equals 3, then in this case, the response vectors would all be 3-by-1 in 

dimension.  If the first coder classified the first unit into the first category, the response 

vector associated with that coding should be stored in the cell at the intersection of the 

first column (or equivalently, treatment or unit) and the first row (or equivalently, block 

or coder), and it would take the form of (2-½  0  0)’.  If the second coder classified this 

unit into the second category, the response vector should be entered in the cell 

corresponding to the first treatment of the second block (meaning, the first unit of the 

second coder), and this vector takes the form of (0  2-½  0)’.  Generally speaking, if a 

coder classified a unit as belong to the ith category, the ith element in the response vector 

would be 2-½, and all other elements would be 0.  The relative location of 2-½ in a 

response vector indicates the category into which the coder has assigned the particular 
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unit.  And the choice of using 2-½, not just any other number, is to ensure the nominal 

level property of κ, i.e. the distance between the two vectors will be zero if the two coders 

agree, and one if the two disagree. 

The extended measure of agreement is given by the equation 

δµδκ /1 obs−= ,      (2) 

where obsδ  denotes observed disagreement and δµ  denotes expected proportion of 

disagreement by chance.  Because MRBP is a based on permutation, δµ  is found by 

permuting the data within each block across treatments.  In other words, δµ  is found by 

permuting the data from each coder across units.  In the original experimental design 

context, the definition of δµ  reflects the addition of blocks because as a general principle 

in randomized blocks designs, from which MRBP originated, randomization does not 

occur across blocks, and therefore in constructing a permutation test, data cannot be 

permuted across the blocks.  This is also implied by the matching distribution in 

elementary probability theory, which forms the underlying probabilistic model of κ (see 

Hubert, 1977).  The maximum number of permutations is M = (g!)b – the total number of 

permutations within each block, or stated equivalently, for each coder’s responses, to the 

bth power.  Such a formulation makes the extension of κ to multiple coder situations very 

easy.   

Generally, assuming b coders independently categorized g units of content, let xkip 

denote the elements in an r-by-1 response vector from coder i for unit p, where k = 1, …, 

r, i = 1, …, b, and p = 1, …, g, the disagreement (distance) function between coder i and 

coder j for the pth unit is given by 
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and the observed disagreement over all distinct pairs of coders and over all g units is 

given by 
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where i < j denotes the sum over all i and j such that 1 ≤ i < j ≤ b, and basically this is to 

ensure that the response from a coder is not compared with itself. 

Assuming that the M permutations are equally probable, a theoretical definition of 

chance disagreement is given by 
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However, one does not need to enumerate all M permutations to arrive at δµ , a more 

efficient working formula for δµ  is available due to the fact that the first moment of the 

permutation distribution is a constant multiple of g2 elementary calculations (see Mielke 

& Iyer, 1982).   

Using similar notations as in equations (3) and (4), then the distance function 

between the ith coder for the pth unit and the jth coder for the qth unit is given by 
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and the following equation determines the chance disagreement 



 

 23

∑∑∑
= = <

−

∆















=

g

p

g

q ji
jqip

b
g

1 1
,

1

2

2δµ ,    (7) 

where i < j denotes the sum over all i and j such that 1 ≤ i < j ≤ b.  Equation (7) seems to 

be quite complicated.  However, it is nothing but the average distance between any 

distinct pairings of response vectors.  As Hubert (1977) suggested, this is also an existing 

result in the matching distribution literature.  Berry and Mielke (1988) have named their 

extended κ coefficient as R, and have established the equivalence of this statistic with 

other known measures. 
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CHAPTER 5 
 
 

THE PROPOSED FAMILY OF  
COEFFICIENTS OF CO-TERMINATION 

 
 
 
 

MRBP Reformulated κ 

It is assumed that two coders are present, and that they have broken a 7-word 

sentence into 3 units.  The analysis of intercoder agreement, using discrete terms, may be 

expressed as a 2 block by 6 treatment MRBP table.  Recall that the number of coders is 

equal to the number of blocks, and the number of coding decisions made is equal to the 

number of treatments (columns) in the MRBP table.  If this sentence is of the form 

ABCDEFG, where each letter represents a word, decisions of choosing between “0” – not 

to break and “1” – to break, at possible breaking points (the spaces between two 

consecutive words) are repeated by each coder for six times.  Therefore, the entries in the 

MRBP table are just 0’s and 1’s, and the data is summarized in Table 1. 

The actual codings in Table 1 are: A/BCDE/FG for coder 1, and A/BCDEF/G for 

coder 2.  If the usual cross-classification layout of κ is used, the design should be a 2 by 2 

table, and it would look like Table 2.  The diagonal entries represent the agreement 

between the two coders in choosing the breaking points (cell 1-1) or non-breaking points 

(cell 0-0), and the off-diagonal entries are their disagreement. 
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Cohen’s κ can be calculated from Table 2 using the usual way. 

25.
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For the computation of κ using MRBP layout, let xip represent the value (0 or 1) 

from the cell corresponding to the ith coder and pth possible breaking point, where i = 

1, …, b, and p = 1, …, g, the symmetrical MRBP distance function – equation (6) – 

between any two cells xip and xjq in a table similar to Table 1 can be reduced to 

[ ] 2/2
, )( v

jqipjqip xx −=∆ ,     (8) 

note that the choice of v does not matter here because the values in the cells are either 0 

or 1. 

Using equations (2) – (8), a reformulated κ can be expressed as one minus the 

ratio between obsδ  – the observed disagreement – and δµ  – the expected disagreement.  

δµ  can be found by averaging over all δ ’s obtained from permuting data within blocks.  

Table 3 is an example of a possible permutation.  For instance, in Block 1, the 1s 

originally in the 1st and 5th treatments are swapped into the 2nd and 3rd places.  For this 

permutation δ  = 4/6 = 2/3. 

To summarize, obsδ  can be calculated using equation (4) as ∑ =
− ∆= 6

1 2,1
16 p ppobsδ  = 

(0+0+0+0+1+1)/6 = .333, and δµ  = ∑ ∑= =
− ∆6

1
6

1 2,1
136 p q qp = 16 / 36 = .444, and κ  is  

1 – .333/ .444 = .25, which is exactly the same as using the cross-classification table, but 

from equations (2) – (8), one can see that the MRBP approach is inherently multivariate 

and can be readily extended to multiple coders unitizing the same segment of content.  A 
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GAUSS (Aptech Systems Inc., 1997) procedure that implements formulae (2)-(8) is in 

Appendix B. 

One of the problems with this approach, as the reader probably has already 

noticed, is an underestimate of reliability.  Without calculating any statistics, a visual 

examination of the codings: A/BCDE/FG for coder 1, and A/BCDEF/G for coder 2, 

reveal the fact that the codings are not much different yet the agreement measure 

indicates that it is merely 25% agreement above chance, a value too low by any standards.  

In the next part of this paper, a small simulation study shall be presented to demonstrate 

the conservativeness of κ, but for now, a remedy shall be presented in the next section 

and it makes use of the notion of continuous content.   

A second problem of significance to the use of κ for discrete type of content is the 

choice of the underlying basic element.  This is especially pertinent when the content is 

not inherently discrete, and one wishes to transform the length readings to binary streams 

and use κ to calculate reliability. 

Restricted Permutation and A Measure Based on Unit Lengths 

One can re-express the data in Table 1 using unit lengths (defined as the number 

of elements in the units) and the result is summarized in Table 4.  For instance, the “1” in 

the first cell of Table 1, which means an observed break at the first possible breaking 

point, translates into a unit of length 1.  This is the first unit given by coder 1, and 

therefore it is entered into the first cell of Table 4.  As another example, the “1” in the 

fifth column of Table 1 indicates another break by coder 1, and the 4 elements between 

this break and the first break form unit 2.  This is apparently a unit of length 4.  As a 

consequence, in Table 4 the second entry for coder 1 is 4.  For the moment, the reader is 
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asked to ignore the lines corresponding to the “Cumulative” lengths.  The usefulness of 

these identities will become clear later. 

By simply applying equations (2) – (7) on the two coders, one can obtain the 

reliability coefficient fairly easily in this case.  With v = 1, δµδκ /1 obs−= = 1 – .667 / 

1.778 = .625.  With v = 2, δµδκ /1 obs−= = 1 – .666 / 5.111 = .87.  Using length readings, 

the agreement index increased quite a bit.  However, the direct application of MRBP is 

quite problematic given that coders usually do not agree on the number of units either.  

Not only are the computational formulae thus rendered useless, there are conceptual 

problems as well.   

Consider the coding, as summarized in Table 5: The first coder came up with 7 

units for this continuous piece of content and the second one came up with only 6.  One 

can easily think of replacing the one missing cell in the last column with zero and then 

apply the computational formulae, but a theoretical problem arises because when the 

permutation within the second block is conducted, the imputed zero may appear, for 

example, in the 3rd column.  It makes little sense because one can hardly imagine a unit 

of length zero in between two other units of positive lengths.  After all, the 

communication content is a sequential stream that does not stop until the endpoint. 

This problem can be offset by using a restricted permutation approach, i.e., by 

fixing the trailing zero(s), should there be one or more missing cells in the last a few 

columns when conducting the within block permutations.  Therefore, the total number of 

possible permutations in the given example is only (7!)(6!) = 3,628,800, instead of (7!)2 = 

25,401,600, as the zero x27 will remain un-permuted. More generally, the total number of 

permutations is given by 
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and when all gj’s are equal, equation (9) is the same as (g!)b, where g refers to the 

maximum number of units given by one or more coder(s) for a particular segment.  This 

change from the original MRBP approach essentially reflects the usefulness of the so-

called reference subsets described in Edgington (1987).  If the set of (g!)b data 

permutations is taken as the primary reference set, then the computation of δµ  under the 

condition when all gjs are equal would be using the reference distribution for the general-

null hypothesis, whereas when not all gjs are equal, and thus equation (9) yields a smaller 

value than (g!)b, the computation of δµ  would be comparable to the test of a restricted 

null hypothesis (see Edgington, 1987, pp. 305-316). 

When not all gjs are equal, the direct expression of δµ  is quite cumbersome, thus 

it is useful to introduce the following computational expressions for clarity and computer 

implementation.  A GAUSS (Aptech Systems Inc., 1997) procedure that implements 

these formulae is in Appendix C.  Let (xip) denote a row of gi unit length readings from 

coder i, e.g. a row in Table 5, where p = 1, …gi, let M be given as in equation (9), and let 

the between cell distance – jqip,∆  be defined as in equation (8), then for any choice of v, 

define the following equations: 
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where i < j denotes the summation over all i and j such that 1 ≤ i < j ≤ b.   Given the 

considerable modification to Mielke and Berry’s (1988) original reformulation of κ , it is 

tempting to give this new coefficient a different name, say, 'κ .  For the data in Table 5, 

with v = 1, δµδκ /1' obs−= = 1 – 3.486/ 5.265 = .338.  With v = 2, δµδκ /1' obs−= = 1 – 

23.811/ 50.174 = .525.  However, this restricted permutation approach is not without 

problems of its own.  The major drawback is that the use of lengths sometimes fails to 

capture the hidden disagreements. 

Consider an example (Table 6) in which two coders are supposed to unitize an 

audio clip by writing down the length of each unit – expressed in minutes and seconds – 

presumably using a timing device such as a stopwatch.  Unlike the previous example in 

Table 4, where the use of length entails a transformation of the binary streams into length 

readings, these length readings are truly “continuous.”  One can easily see from the table 

that the total length of the content segment is 2 minutes, and both coders unitized the 

content segment into three units.  The numbers in the parentheses are the length readings 
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expressed in terms of seconds.  A direct application of equations (8) – (16) is possible 

and would yield δµδκ /1' obs−= = 1 – 10/ 23.333 = .571 for v = 1, and δµδκ /1' obs−= = 

1 – 150/ 850 = .824, for v = 2.  The problem, however, lies in the length of unit 2.  Both 

coders came up with the length of 30 seconds for the second unit, but apparently, the 

starting and ending points for unit 2 are not the same across coders.  For coder 1, the 

second unit refers to the 30 seconds starting from 1 minute 15 seconds, while for coder 2, 

the second unit refers to the 30 seconds of content starting from 1 minute.  This is an 

artifact of using length readings directly.  In other words, a unit-by-unit comparison of 

the two coders’ length readings can some lead to artificially high agreement values. 

One may wonder whether the reformulated κ  could provide an easy remedy for 

this problem, but it turns out that applying the reformulated κ  to continuous length data 

requires a transformation that is even more problematic.  The transformation of the length 

data into a form susceptible to analysis using κ  entails the selection of the length or size 

of a baseline unit, or using a familiar discrete content term – an element, which has a 

profound impact on the computation of κ . 

Tables 7 and 8 summarize the transformed binary stream for the length readings 

in Table 6.  The baseline unit for Table 7 is 5 seconds, and that for Table 8 is 15 seconds.  

By applying equations (2) – (8), δµδκ /1 obs−= = 1 – .174/ .159 = – .095 for Table 7, 

and δµδκ /1 obs−= = 1 – 0.571/ 0.408 = – .400 for the data in Table 8.  Such a large 

discrepancy clearly demonstrates the fact that applying the reformulated κ  to continuous 

length data is a potentially very bad practice because two researchers using the same data 

set and the same computational formulae would necessarily arrive at two different values 
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of κ , unless they choose the same baseline unit that defines the possible breaking points.  

In fact, if researchers would like to inflate their reliability coefficients, they may simply 

choose to define 1 second as the baseline unit.  The smaller the baseline unit is, the higher 

κ  will be (A simple demonstration is included in Appendix D). 

The coefficient based on lengths, on the other hand, is unaffected by the selection 

of the length of units.  The values in the parentheses in Table 6 are expressed in terms of 

seconds.  If the baseline unit is changed to 5 seconds, the value of 'κ  will still be the 

same as before: δµδκ /1' obs−= = 1 – 2/ 4.667 = .571 for v = 1, and δµδκ /1' obs−= = 1 – 

6/ 34 = .824, for v = 2.  In general, the value of 'κ  will remain invariant under linear 

transformations of the dataset.  This invariance property is true for all length-based 

measures.  Given the problem with reformulated κ , it seems that a length-based measure 

that seeks a “moment-by-moment” comparison (Conger, 1985) rather than a unit-by-unit 

comparison of the lengths should be better that the existing methods.  And such is indeed 

true for the method to be presented in the next section as a remedy for the limited 

applicability of κ  and the inability of 'κ  to capture hidden disagreement such as unit 2 in 

Table 6. 

A Measure Based on Cumulative Lengths 

By borrowing the concept of empirical cumulative distribution function (ECDF) 

from elementary mathematical statistics, one can envision the disagreement between two 

coders when unitizing continuous content as the difference between two cumulative 

length functions.  A plot should help illustrating this point.  Figure 1 plots two cumulative 

length functions for the dataset in Table 5.  In Figure 1, the dotted line corresponds to 

coder 1 and the solid line corresponds to coder 2.  When coder 2 has used up all available 
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content, the cumulative length is 70.0 and it remains at 70.0 regardless of how many 

missing cells there may be.  Thus the conceptual problem of having to impute zero(s) for 

one or more missing cells in the last a couple of columns due to unequal number of units 

is no longer a concern here, because the cumulative length function is a step function that 

has its maximum equal to the total length of the content segment.  In a sense, for a coder 

who ends up having more units than the other coders, the representation using cumulative 

lengths is straightforward, i.e., all the other step functions max-out earlier than the one 

with more units.  Using cumulative lengths also solves the problem of 'κ  directly.  In 

Table 6, even though the two coders agreed on the length of unit 2, the cumulative 

lengths are still off by 15 seconds, reflecting the fact that they came up with different 

starting points for unit 2.  In addition, the simulation study to be reported in the next part 

of this paper will demonstrate that this measure based on cumulative lengths provides 

some improvement over κ  and 'κ  in terms of correcting for the underestimate of 

agreement in co-termination. 

Using similar notations, let xip represent the value from the cell corresponding to 

the ith coder and pth unit, where i = 1, …, b, and p = 1, …, gmax, where gmax is the 

maximum number of units given by the coders.  One may consider gmax = max (g1, g2, …, 

gb), and the squared distance (v = 2) between two cumulative lengths corresponding to 

cells xip and xjp in a table like Table 5 or Table 6 can be expressed as 
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and the overall observed disagreement is 
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where i < j denotes the sum over all i and j such that 1 ≤ i < j ≤ b.   

To find the expected disagreement, three steps are involved: 1) conduct a 

restricted permutation of the unit length data within each block, still holding the missing 

cells due to the unequal number of units as fixed; 2) for each permutation, calculate 

cumulative lengths for each cell, 3) use equation (17) and (18) to find the disagreement 

for that particular permutation, cδ .  Here the total number of permutations – M – is the 

same as given in equation (9).  One can imagine conducting an exhaustive permutation to 

iterate through the M possibilities, and then the expected disagreement is found by 

dividing the sum of all the cδ ’s by M, just as in equation (5).   

The squared distance is used in equation (17), simply because when the 

differences are squared, the complex distance function between two cumulative lengths 

can be written as a linear combination of the squared distances between simple unit 

lengths and some cross-product terms.  The end result is a solution that provides the exact 

expected disagreement, i.e. the exact first moment of the permutation distribution of cδ ’s, 

without having to know the value of every element in the distribution.  Such a vast 

reduction in computation is not available for metric Euclidean distances.  As a diversion 

from the main theme, it is worth noting here that for a permutation-based statistic, one 

can either generate 1) an exact reference distribution, 2) an approximate reference 

distribution based on random sampling from all possible permutations, or 3) a moment 

approximation of the reference distribution using the exact values of lower order 

moments.  The first approach is generally computationally infeasible under most 
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circumstances, and the use of the second approach also requires a large number of 

repeated random samples in order to achieve stability in the result, otherwise, researchers 

using the same dataset would necessarily produce different results due to sampling 

variability.  When working under the traditional hypothesis-testing framework, the third 

approach is often more efficient than the first two approaches, and it is the basis of Berry 

et al.’s (1976) Pearson Type III distribution approximation to the null distribution of the 

MRPP test statistic, from which the reformulated κ , 'κ  and this new measure based on 

cumulative lengths are derived.  Computational formulae for finding the expected 

disagreement without actually having to conduct permutations are presented as equations 

(19) – (27).  These formulae are still quite cumbersome, but a GAUSS (Aptech Systems 

Inc., 1997) procedure that implements this method is available in Appendix E. 

Let (xip) and (xjq) denote two rows of unit length data, not cumulative length data, 

from coders i, and j, where p, q = 1, …, gi, and 1 ≤ i < j ≤ b.  Without loss of generality, it 

is further assumed that gi is always greater than or equal to gj.  In practice, this restriction 

is not a concern because the distance function is symmetric and thus one can easily swap 

the two row vectors to make gi and gj satisfy the condition specified.  Let jqip,∆  – the 

squared distance between two lengths (cells) – be given as in equation (8), and M be 

given as in equation (9), define the following identities: 
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For gj ≥ 2, define: 
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and for (gi – gj) ≥ 1, define: 
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The expected disagreement can be readily calculated using the following equations 
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where )(ψ1 jg  and ),(ψ2 ji gg  are two indicator functions of the form: 
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Then the new measure *κ  is given by 

cc
obs δµδκ /1* −= .      (28) 
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The numerical results for the example datasets in Tables 4 and 5 are as follows: 

cc
obs δµδκ /1* −= = 1 – 1 / 10.222 = .902, and cc

obs δµδκ /1* −= = 1 – 143.43 / 551.197 = .74.  

For the dataset in Table 6, if 1 second is chosen as the baseline unit, the result is 

cc
obs δµδκ /1* −=  = 1 – 450 / 1700 = .735.  If 5 seconds is chosen as the baseline unit, the 

result is cc
obs δµδκ /1* −=  = 1 – 18 / 68 = .735.  If 15 seconds is chosen as the baseline 

unit, the result is still cc
obs δµδκ /1* −=  = 1 – 2 / 7.556 = .735.  It is easy to see that *κ  is 

invariant under linear transformations. 

Tests of Significance 

Because κ  is merely a linear function of obsδ , a test of significance of κ  is 

equivalent to the test of obsδ .  Mielke and Iyer (1982) gave formulae for the first three 

moments of the MRBP null distribution, and using the mean and variance, obsδ  can be 

standardized and the associated probability of obsδ  can be approximated via a Pearson 

type III distribution (see Mielke and Berry, 2001).  This p-value is associated with the 

test whether κ  is significantly different from zero.  There is no random sampling 

assumption involved, and this test of significance is non-asymptotic.  Each one of the n 

segments in a reliability study would therefore have a p-value, and by looking at the set 

of p-values, the researcher should be able to infer whether the coders’ overall agreement 

is due to chance or not. 

A test of significance may be conducted for the coefficient that uses the 

cumulative lengths via a random sample of all possible permutations (see Edgington, 

1987).  The exact moments of the null distribution can be derived along the same lines as 
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equations (19) – (23), but algebra would be very tedious.  Generally one is better off 

leaving the computation to a powerful computer rather than relying on one’s analytical 

skills when the time devoted to solving a particular problem analytically is exponentially 

greater than what would take for a computer to obtain an answer approximately. 
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CHAPTER 6 
 
 

SIMULATION STUDIES 
 
 
 
 

The simulation studies reported here are primarily intended for demonstration 

purposes.  First, it would be ideal to show that the newer methods, 'κ  and *κ , especially 

the latter, which is based on cumulative lengths, are better than the original MRBP 

reformulated κ  in terms of being less conservative.  If one of the newer methods can 

handle discrete data as well as κ  or better than κ , and at the same time have the 

capability to handle continuous length readings, which κ  cannot deal with, it should be 

the method of choice.  Second, there are some unknowns about 'κ  and *κ ’s underlying 

permutation structure to obtain expected disagreement by permuting lengths rather than 

by permuting the binary streams of breaking points. 

Simulation I: Performance comparisons 

The main purpose of this set of simulations was to examine the relative 

performance of the four competing methods, namely, κ , 'κ  (v = 1), 'κ  (v = 2), and *κ , 

under various conditions.  The factors manipulated were: 1) number of coders (2, 4, 6), 2) 

length of the content segments (10, 15, 20, 30), 3) number of units, or equivalently, the 

number of breaking points plus one (4 to 17, depending on the length of the content), and 

4) the proportion of unit boundaries set to be in agreement across coders (0, .5, and .8).  
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In a sense, this last manipulation creates a “theoretical” value of agreement, and in a 

sampling experiment, whether a method is conservative or not is determined by 

comparing the long run average of the agreement coefficients computed using such a 

method with the theoretical value.  Entries in Table 9 to Table 12 are based on the results 

from a sampling experiment program written in GAUSS (Aptech Systems Inc., 1997).  

Due to the exponentially increasing amount of computation time, the number of 

replications for each condition was set to a mere 400, a number usually considered too 

small, but in this case the performance patterns are quite distinguishable.  The program 

made use of the procedures listed in Appendices B, D, and E.  It was assumed that the 

coders agreed on the number of units contained in any content segment, so what was 

generally left random was the choice of breaking points in the content streams.  Recall 

that when the numbers of units are equal across coders, co-termination takes a strong 

form.  The data generation process mimics this by creating a series of random binary 

streams.  The number of streams is equal to the number of coders.  The length of content 

is equal to the length of the binary stream plus one.  The number of breaking points in the 

content segment is equal to the number of 1’s in the stream.  Setting common unit 

boundaries is a little trickier.  For illustrative purposes, in a bivariate (2-coder) case, the 

two coders are assumed to be co-terminus for a certain number of units, say, n, with n 

determined by the proportion of units in agreement.  If this proportion is zero, no special 

handling is needed.  If the proportion is above zero, n 1’s shall be inserted into a random 

binary stream to create agreement.  Note that the data generation process deliberately 

disadvantaged 'κ  and *κ  because the content is inherently discrete, which can be 

handled quite well by κ . 
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The first line in each one of the cells in Table 9 corresponds to the mean values of 

the four competing intercoder agreement indices when there are 2 coders and the unit 

breaking points are completely random, i.e. the proportion of common breaking points is 

set to zero.  In general, regardless of how many breaking points there are or how long the 

content segment is, all methods yielded long run average coefficients close to zero, which 

is exactly what is expected of an unbiased method of computing agreement.  The 

standard deviations of the empirical distributions of the four coefficients are also reported 

for the conditions in Tables 9 to 11.  Note that the variability of *κ  is generally larger 

than that of κ , which is not a surprise because 1) *κ  is defined in a squared Euclidean 

space, whereas κ  utilizes metric Euclidean distance, while this difference is irrelevant to 

computation of the mean values, it does affect the variance of the distributions; 2) 

previous literature on the null distributions of MRPP family of statistics (Mielke, 1979) 

as well as simulation results not reported here indicates that the distribution of *κ  is 

almost invariably skewed to the negative direction, and a few outlying observations in a 

skewed distribution will certainly inflate the variance to a great extent.   

In Table 10, the proportion of common breaking points is set to 50%.  Here the 

difference between the four methods starts to emerge.  Except for those conditions in 

which the number of breaking points is small (e.g., 4), the only method that consistently 

kept the agreement coefficient close to the theoretical value (.5) across the board in 

almost every condition is *κ .   

Table 11 is constructed in much the same way as Tables 9 and 10, only that the 

theoretical value of agreement is set to .8.  The pattern observed in Tables 9 and 10 

carries on to Table 11, and the clear winner is again *κ .  The more interesting finding in 
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Table 11 is that the theoretical agreement is set to a value considered by many (e.g. 

Krippendorff, 1980) as a rule of thumb to judge whether the coding process is reliable or 

not.  This kind of decision rule has very strong impact on the final outcome of any 

particular content analysis.  Oftentimes, after a researcher has determined that the 

intercoder agreement coefficient is below .8 (or using some other similar standards), he 

or she would go back to re-train the coders or use every means possible to improve the 

coding scheme, and hope that in the next round of reliability assessment, the agreement 

index will go above .8.  Under the current context, if a researcher applied κ  to compute 

an intercoder agreement index for the unitizing phase, he or she is likely to find that it is 

well below what is commonly expected.  Indeed, for the data in Table 11, 80% of all 

breaking points are set to be in agreement for the two coders, and yet in none of the 

conditions the value of κ  is close to .8. 

For four coders, *κ  is still better than κ , but the advantage of *κ  over κ  is not 

as great as seen for the two-coder case.  In fact, in some cases *κ  is even worse than κ .  

A similar trend exists in the six-coder case.  The findings are summarized in Tables 12 

and 13.   

What can be inferred from the simulations reported here is that for two coders, κ  

is indeed biased downward, and *κ  is clearly the method of choice, but κ  starts to pick 

up when the number of coders increases.  These findings are for discrete type of content 

only, and the combinations of lengths and number of breaking points examined here are 

perhaps not very representative of what researchers may encounter in the “real world,” so 

making generalizations is quite difficult.  However, *κ  does possess the potential to best 

capture the disagreement of co-termination and its use is encouraged. 
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Simulation II: What to permute? 

In determining the expected disagreement for all length-based measures, 

including 'κ  and *κ , the within-block permutations are conducted using the length data.  

If it is fair to say that the permutation of the unit lengths is almost inevitable for truly 

continuous length-readings, such as the data in Table 6, the permutation of lengths 

transformed from binary streams is quite questionable.  Take the unit lengths in Table 4 

as an example. After all, the lengths contain the same information as the binary streams 

in Table 1, so why not conduct the permutations using the binary streams instead of the 

lengths?  Conceptually it is very simple: each permutation of the underlying binary 

streams shall be re-expressed using lengths, and the length difference or the cumulative 

length difference shall be taken and recorded to form a permutation distribution from 

which the expected difference can be calculated.   

The answer to this question is not very straightforward.  It is certainly possible to 

conduct permutation on the underlying binary streams, but there are several limitations to 

this approach.  First, expressions of the exact expected disagreement for length-based 

measures are no longer available (at least for now) if what is permuted is the underlying 

binary stream.  The derivation of the exact first moment of the permutation distributions 

of MRBP based statistics primarily utilizes the fact that the distances are calculated from 

the original data that are being permuted.  Any transformation of the original data will 

result in extremely complex solutions.  For example, when *κ  is defined as a function of 

the discrepancies between the cumulative lengths the expression of its expected 

disagreement is extremely complex, but it is still possible to write out those equations 

because the cumulative lengths is only a very simple linear combination of the unit 



 

 43

lengths.  With the transformation of binary streams to unit lengths, it is already quite 

impossible to describe the exact nature of such a transformation mathematically, not to 

mention deriving a solution to find the expected disagreement.  Second, simulation data 

reported in Table 14 show that the long run average of expected disagreement using 

length permutations will converge to the value obtained via permuting the underlying 

binary streams.   

In Table 14, the long run expected disagreement of the two versions of 'κ , which 

are based on permuting lengths rather than the underlying binary streams are reported.  

The data generation process is the same as for Simulation I, and the number of 

replications was set to 1,000.  The Model I columns are the expected disagreement 

obtained via permuting the binary streams and they are invariant over the 1,000 

replications, so in other words, given the length and the number of breaking points, the 

expected disagreement is completely determined for Model I permutations.  Model II 

refers to the permutations of lengths, and it is conceivable that for any particular trial in 

those 1,000 trials, the permutation distribution is a subset of Model I permutation 

distribution.  Overall, the two converge, as can be seen in Table 14: the Model I and 

Model II column values are very close. 
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CHAPTER 7 
 
 

DISCUSSION 
 
 
 
 

The assessment of co-termination in the unitizing phase of content analysis is an 

important issue for communication researchers.  The agreement of unitizing focuses on 

how independent coders choose breaking points at various places in a segment of textual 

content.  It is assumed that segments are of two types, discrete and continuous.  Discrete 

segments are composed of a finite number of elements, and unitizing a discrete segment 

is an operation of grouping elements into units, with the unit defined as a subset of a 

segment.  For continuous content, it is hard to define what an element is, but it is easy to 

deal with the length of units, most notably expressed in terms of time. 

Coefficients of co-termination under various circumstances were considered in 

this thesis.  Generally speaking, for genuinely discrete data, the MRBP reformulated κ  

can be used directly.  The number of coding decisions in this case is the number of 

elements in the discrete segment minus one, and the reliability data would be binary 

streams of 0’s and 1’s.  This approach, however, often results in underestimates of 

agreement, as shown by the simulation studies.  Furthermore, this approach cannot be 

easily extended to deal with continuous content segments.  Applying κ  to continuous 

content entails a transformation of the length readings using some pre-defined baseline 
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unit, and because the value of κ  would change depending on the size of the baseline unit, 

κ  is not invariant under linear transformations of the length dataset.  The coefficients 

that are based on lengths, on the other end, can handle the continuous type of content 

quite well.  It is perhaps better to state that they were inspired by the MRBP layout rather 

than MRBP itself, and with some modification, the new coefficient 'κ  can handle the 

situation of coders disagreeing on the number of units contained in the segment, but the 

inherent problem is that it cannot detect a form of hidden disagreement as exemplified in 

Table 6, due to that fact that it is comparing length readings in a unit-by-unit fashion.  

The nice property associated with the length-based measures is that they are invariant 

under linear transformations of the data, which is absent in MRBP reformulated κ .  The 

last coefficient – *κ , that makes use of cumulative lengths is not only less conservative 

than most other indices, it can also solve the inherent problems associated with κ  and 'κ  

because the comparison of cumulative lengths is a moment-by-moment comparison of 

the codings from pairs of coders.  Simulation studies were carried out and it was found 

that *κ  was indeed closer to the theoretical value of agreement than other indices in 

most situations, especially with 2 coders.  The second simulation also justified the 

permutation structure of the methods based on the permutation of lengths rather than the 

permutation of the underlying binary streams.  Depending on the nature of the study, 

researchers now possess a family of intercoder agreement indices for the unitizing phase 

of content analysis, based on the Multi-response Randomized Blocks Permutation 

procedure.  One can imagine that a researcher 1) take a sample of segments from the pool 

of content, 2) obtain the reliability data for unitizing from a group of independent coders, 

3) for each segment, calculate the co-termination index by using one of the methods 
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discussed in this thesis, and 4) finally, the overall co-termination is found by averaging 

the co-termination indices over all segments. 

As an endnote, I would like to point out that all the indices of co-termination 

discussed thus far share the same guideline, i.e. they all seek some form of chance-based 

correction of the observed agreement.  The formulation of all these methods share the 

form of 1 – Do / De, where Do is the observed disagreement and De is the expected 

disagreement by chance.  A conceptually much simpler extension of the *κ  method may 

take the form of 1 – Do / Dm, where Dm is the maximum disagreement between pairs of 

coders given the lengths data available.  In terms of the MRBP permutations, this Dm is 

maxima of the permutation distribution of cumulative lengths. Graphically, this can be 

thought of as the maximum discrepancy between the two cumulative length functions.  

When the observed disagreement is zero, the agreement index is 1, and when the 

observed disagreement is equal to the maximum disagreement, agreement is 0.  In most 

cases, the observed discrepancy between the two cumulative length functions falls 

somewhere in between the extremes, and the value of agreement calculated in this way 

will necessarily be larger than a chance corrected index such as *κ .  At present, however, 

the properties of this new index still remain to be uncovered in future research. 
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APPENDIX A 
 
 
 
 

Permutation tests represent the “ideal” situations where one can derive the exact 

probabilities rather than approximate values obtained from common probability 

distributions, such as the t, F and χ2 (Mielke & Berry, 2001, p. 1).   Carrying out 

randomization or permutation of the collected data rather than relying on the often times 

unreasonable assumption of random sampling or normality not only make a test more 

data-dependent, but also enhances the practicability of a test, as the practitioners have full 

control over the stochastic component of the statistical model. 

Assuming an r-dimensional k group design with the combined sample size 

equaling N, and group sizes equaling ni where i = 1, …, k, and ∑ =
k
i in1 = N, let (x1I, …, xrI) 

denote the r-dimensional responses where I = 1, …, N, and let Si, where i = 1, …, k 

denote the k groups of responses, or using the terms of Mielke and Berry (2001), the 

“exhaustive partitioning” of the N responses into k disjoint sets (p. 12).  The basic 

formulation of the MRPP family of statistics involves the definition of a symmetric 

distance function of the form 
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as a measure of the multivariate distance between the two observations xI and xJ.  For 

notational simplicity both the “excess group” and the truncation of distance to a preset 

maximum value shall not be discussed in the present paper (for details see Mielke & 

Berry, 2001).  The choice of v is arbitrary, but the two choices v = 1 and v = 2 seems most 

reasonable.  When v = 1, the distance is metric Euclidean distance and this distance 

function has nice theoretical properties of being robust and much less influenced by 

outliers (Mielke & Berry, 2001).  When v = 2, the distance is defined in a non-metric 

squared Euclidean space because the triangle inequality fails in this analysis space, and it 

is known through both theoretical and simulative studies that this choice leads to a less 

robust test (Mielke & Berry, 1994).  However, the choice of v = 2 yields an easier 

explanation of the test results, because many popular tests essentially involve the use of 

squared distance. 

The MRPP statistic can be thought of as a weighted average of within-group 

distances.  Intuitively, a smaller value of the MRPP statistic would mean higher 

concentration within each a priori classified group (Mielke, 1984, p. 815).  Such an 

interpretation is also in line with the geometric interpretation of the conventional 

multivariate analysis of variance (see Edgington, 1987, pp. 190).  Therefore, in terms of 

detecting between group differences, a smaller value of the MRPP statistic is necessarily 

“better.” 

The MRPP statistic is given by 

∑
=

=
k

i
iiobs C

1

ξδ , 

where Ci is the group weight for i = 1, …, k, and ∑ =
k
i iC1 = 1, and 
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is the average within-group distance for all distinct pairs of responses in the ith group.  
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The choice of group weights is discussed in Mielke (1984), but Ci = ni / N, and Ci = (ni – 

1) / (N – k) are two sensible choices for v = 1 and v = 2, respectively. 

The formal test of significance of obsδ  is carried out by assuming the null 

hypothesis of equal probabilities being placed upon each one of the 

∏
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possible permutations of the N responses into the k groups, each permutation yielding a 

realized value of δ .  The probability value associated with obsδ  is a ratio of the number 

of δ s being smaller than or equal to obsδ  and M, formally written as P ( obsδ ) = {# 

δ ≤ obsδ } / M. 

Because M is usually a very large number even for relatively small sample sizes, 

the exact reference distribution of the MRPP statistic is difficult to obtain, therefore, 

Mielke, Berry and Johnson (1976) have provided efficient computational methods for the 

first three cumulants of the MRPP null distribution, upon which a moment approximation 

using Pearson type III distribution may be utilized.  Generally this approximation is 

excellent.  For details please refer to Mielke & Berry (2001). 
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APPENDIX B 
 
 
 
 

The following is a GAUSS (Aptech Systems Inc., 1997) procedure that 

implements the multi-coder version of κ .  The input is a b-coder by g-unit matrix of 

binary streams similar to Table 1.  The output is a 3-by-1 vector, call it resultv, with the 

first element being the observed disagreement, the second element being the expected 

disagreement (un-averaged), and the third element being the denominator of expected 

disagreement.  So agreement is simply 1 – resultv[1]/( resultv[2]/ resultv[3]). 

 

proc kappa(x);
local delta, distance, temp, x1, x2, n1, n2, distance1, factor1, resultm;
delta = 0;
distance = 0;
n1 = cols(x);
n2 = n1;
for idxI (1, rows(x)-1, 1);
for idxJ (idxI+1, rows(x), 1);

x1 = x[idxI,.]';
x2 = x[idxJ,.]';
delta = delta + sumc(abs(x1-x2));
distance1 = 0;
for i (1, n1, 1);

for j (1, n2, 1);
distance1 = distance1+abs(x1[i] - x2[j]);

endfor;
endfor;
distance = distance + distance1;

endfor;
endfor;
resultm = zeros(3,1);
resultm[1] = delta/n1;
resultm[2] = distance/n1;
resultm[3] = n1;
retp(resultm);

endp;
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APPENDIX C 
 
 
 
 

The following is a GAUSS (Aptech Systems Inc., 1997) procedure that 

implements the method 'κ .  The input is a b-coder by g-unit matrix similar to Table 5.  

The output is a 3-by-1 vector, call it resultv, with the first element being the observed 

disagreement, the second element being the expected disagreement (un-averaged), and 

the third element being the denominator of expected disagreement.  So agreement is 

simply 1 – resultv[1]/( resultv[2]/ resultv[3]). 

 
proc kappaprime(x,v);

local M, delta, distance, temp, x1, x2, n1, n2, distance1, factor1, factor2,
resultm;

M = prodc(sumc((x .gt 0)')!);
delta = 0;
distance = 0;
for idxI (1, rows(x)-1, 1);
for idxJ (idxI+1, rows(x), 1);

x1 = x[idxI,.]';
x2 = x[idxJ,.]';
n1 = sumc(x1 .gt 0);
n2 = sumc(x2 .gt 0);
if (n1 lt n2);

temp = n1;
n1 = n2;
n2 = temp;
temp = x1;
x1 = x2;
x2 = temp;

endif;
x1 = x1[1:n1];
x2 = x2[1:n1];
delta = delta + sumc(abs(x1-x2)^v);
distance1 = 0;
for i (1, n1, 1);

for j (1, n2, 1);
distance1 = distance1+abs(x1[i] - x2[j])^v;

endfor;
endfor;



 

 55

factor1 = M*(1/n1);
factor2 = M*(1-n2/n1);
distance = distance + distance1*factor1+sumc(x1^v)*factor2;

endfor;
endfor;
resultm = zeros(3,1);
resultm[1] = delta/(rows(x)!/(rows(x)-2)!/2);
resultm[2] = distance/(rows(x)!/(rows(x)-2)!/2);
resultm[3] = M;
retp(resultm);

endp;
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APPENDIX D 
 
 
 
 

First, assuming that there are only 2 coders, the total length of the content 

segment is N, and the coders agreed on the number of units in the content – denote it by a.  

In order to transform the continuous content into binary streams to reflect the breaking 

points and non-breaking points, the length of the baseline unit is first chosen to be n.  As 

a consequence, there are altogether (N / n – 1) elements in the transformed binary streams, 

and the number of 1’s in the two streams are both (a – 1), and the number of 0’s in the 

two streams are both (N / n – a).  It is straight forward from equation (7) that the excepted 

average disagreement is 2 (a – 1) (N / n – a) / n2.  Denote the observed average 

disagreement with δ / n, it is again straightforward from equation (2) that κ = 1 – δ / [2 (a 

– 1) (N / n – a) / n] = 1 – δ / {(2a – 2) [(N – an) / n2]}.  It is easy to see that as n decreases, 

the identity (N – an) / n2 increases, because N and a are constants regardless of how many 

basic elements there are in the binary stream.  The result is therefore the decrease in the 

length of the baseline unit is directly associated with an increase in κ. 
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APPENDIX E 
 
 
 
 

The following is a GAUSS (Aptech Systems Inc., 1997) procedure that 

implements the method based on cumulative lengths, *κ .  The input is a b-coder by g-

unit matrix similar to Tables 5 or 6. The output is a 3-by-1 vector, call it resultv, with the 

first element being the observed disagreement, the second element being the expected 

disagreement (un-averaged), and the third element being the denominator of expected 

disagreement.  So agreement is simply 1 – resultv[1]/( resultv[2]/ resultv[3]). 

proc kappastar(x);
local delta, distance, M, temp, x1, x2, n1, n2, distm, tempdistm, part2,

indexm, minor, minorv, factor, resultm;
delta = 0; distance = 0;
M = prodc(sumc((x .gt 0)')!);
for idxI (1, rows(x)-1, 1);
for idxJ (idxI+1, rows(x), 1);

x1 = x[idxI,.]';
x2 = x[idxJ,.]';
n1 = sumc(x1 .gt 0);
n2 = sumc(x2 .gt 0);
if (n1 lt n2);

temp = n1;
n1 = n2;
n2 = temp;
temp = x1;
x1 = x2;
x2 = temp;

endif;
x1 = x1[1:n1];
x2 = x2[1:n1];
for i (1, n1, 1);

delta = delta + (sumc(x1[1:i])-sumc(x2[1:i]))^2;
endfor;
distm = zeros(n1, n1);
for i (1, n1, 1);

distm[.,i] = x1[.,1] - x2[i,1];
endfor;
for j (1, n2, 1);

distance = distance+sumc(vec(distm[.,1:n2]^2))*(1/n1/n2)*M*(n1+1-j);



 

 58

endfor;
if (n2 ge 2);

for i (1, n2-1, 1);
for j (i+1, n2, 1);

tempdistm = distm[.,1:n2];
for col (1, n2-1, 1);
for row (1, n1, 1);

indexm = zeros(n1,n2);
indexm[row,.] = ones(1,n2);
minor = delif(tempdistm,indexm);
minorv = tempdistm[row,col].*vec(minor[.,col+1:n2]);
factor = 4*(1/n1)*(1/n2)*(((n2-1)*(n1-1))^(-1))*M*(n1+1-j);
distance = distance + factor*sumc(minorv);

endfor;
endfor;

endfor;
endfor;

endif;
if ((n1 - n2) ge 1);

for j (n2+1, n1, 1);
distance = distance + sumc(distm[.,j]^2)*(1/n1)*M*(n1+1-j);

endfor;
for i (1, n2, 1);
for j (n2+1, n1, 1);

tempdistm = distm[.,1:n2];
part2 = distm[.,j];
for col (1, n2, 1);
for row (1, n1, 1);

indexm = zeros(n1,1);
indexm[row] = 1;
minor = delif(part2,indexm);
minorv = tempdistm[row, col].*minor;
factor = 2*(1/n1)*(1/n2)*((n1-1)^(-1))*M*(n1+1-j);
distance = distance + factor*sumc(minorv);

endfor;
endfor;

endfor;
endfor;
for i (n2+1, n1-1, 1);
for j (i+1, n1, 1);

tempdistm = distm[.,i];
part2 = distm[.,j];
for row (1, n1, 1);
indexm = zeros(n1,1);
indexm[row] = 1;
minor = delif(part2,indexm);
minorv = tempdistm[row].*minor;
factor = 2*(1/n1)*((n1-1)^(-1))*M*(n1+1-j);
distance = distance + factor*sumc(minorv);

endfor;
endfor;

endfor;
endif;

endfor;
endfor;
resultm = zeros(3,1);
resultm[1] = delta/(rows(x)!/(rows(x)-2)!/2);
resultm[2] = distance/(rows(x)!/(rows(x)-2)!/2);
resultm[3] = M;
retp(resultm);

endp;
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APPENDIX F 
 
 
 
 

 Treatments 

Blocks (Coders) 1 2 3 4 5 6 

1 1 0 0 0 1 0 

2 1 0 0 0 0 1 

 
 
Table 1 
Example dataset: MRBP layout 
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 Coder 1  

Coder 2 1 0 Sums 

1 1/6 1/6 1/3 

0 1/6 1/2 2/3 

Sums 1/3 2/3 1 

 
 
Table 2 
Cross-classification layout of data in table 1 
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 Treatments 

Blocks (Coders) 1 2 3 4 5 6 

1 0 1 1 0 0 0 

2 1 0 0 0 0 1 

 
 
Table 3 
A possible permutation of the data in table 1 
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 Treatments 

Blocks (Coders) 1 2 3 

1 1 4 2 

Cumulative 1 1 5 7 

2 1 5 1 

Cumulative 2 1 6 7 

 
 
Table 4 
Unit lengths: transformation of data in table 1 
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 Treatments 

Blocks (Coders) 1 2 3 4 5 6 7 

1 10.3 19.7 10.1 9.8 4.6 5.0 10.5 

Cumulative 1 10.3 30.0 40.1 49.9 54.5 59.5 70.0 

2 10.2 19.8 8.5 12.0 9.5 10.0 – 

Cumulative 2 10.2 30.0 38.5 50.5 60.0 70.0 70.0 

 
 
Table 5 
Unit lengths: unequal number of units 
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 Treatments 

Blocks (Coders) 1 2 3 

1 1:15 (75) 0:30 (  30) 0:15 (  15) 

Cumulative 1 1:15 (75) 1:45 (105) 2:00 (120) 

2 1:00 (60) 0:30 (  30) 0:30 (  30) 

Cumulative 2 1:00 (60) 1:30 (  90) 2:00 (120) 

 
 
Table 6 
Unit lengths: hidden disagreement for unit 2 
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 Treatments 

Blocks 
(Coders) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

 
 
Table 7 
Transformation of data in table 6 using 5 seconds as a baseline unit 
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 Treatments 

Blocks (Coders) 1 2 3 4 5 6 7 

1 0 0 0 0 1 0 1 

2 0 0 0 1 0 1 0 

 
 
Table 8 
Transformation of data in table 6 using 15 seconds as a baseline unit 
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  Methods 

Length Units κ  'κ  (v = 1) 'κ  (v = 2) *κ  

10 4 -.022 .017 .016 -.016 
 SDs .342 .352 .528 .781 

10 6 -.006 .004 .009 .008 
 SDs .362 .316 .404 .746 

10 8 -.022 -.036 -.040 -.025 
 SDs .346 .330 .361 .737 

15 4 .025 .035 .048 .048 
 SDs .266 .324 .502 .725 

15 10 .010 -.007 -.002 -.053 
 SDs .285 .253 .313 .703 

20 4 -.004 -.009 -.007 -.011 
 SDs .228 .326 .505 .734 

20 10 -.023 -.018 -.020 -.004 
 SDs .230 .207 .302 .704 

20 16 .016 .024 .022 .050 
 SDs .241 .226 .249 .759 

30 4 -.003 -.002 .001 .002 
 SDs .202 .327 .524 .759 

30 17 .018 .003 .003 .086 
 SDs .190 .161 .224 .819 

Overall Means -.001 .001 .003 .009 
 
 
Table 9 
Performance comparison for 2 coders: 0 % unit boundaries in agreement
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  Methods 

Length Units κ  'κ  (v = 1) 'κ  (v = 2) *κ  

10 4 .234 .150 .189 .275 
 SDs .288 .406 .571 .696 

10 6 .204 .147 .179 .344 
 SDs .310 .365 .468 .601 

10 8 .127 .103 .119 .273 
 SDs .373 .366 .401 .710 

15 4 .338 .206 .245 .411 
 SDs .210 .371 .553 .672 

15 10 .172 .142 .165 .405 
 SDs .257 .281 .355 .581 

20 4 .359 .248 .307 .436 
 SDs .173 .369 .559 .692 

20 10 .276 .187 .211 .476 
 SDs .192 .237 .326 .411 

20 16 .137 .118 .132 .359 
 SDs .253 .235 .285 .688 

30 4 .322 .199 .234 .400 
 SDs .130 .367 .539 .620 

30 17 .245 .182 .204 .498 
 SDs .158 .176 .247 .378 

Overall Means .241 .168 .200 .388 
 
 
Table 10 
Performance comparison for 2 coders: 50 % unit boundaries in agreement
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  Methods 

Length Units κ  'κ  (v = 1) 'κ  (v = 2) *κ  

10 4 .573 .419 .510 .667 
 SDs .190 .457 .548 .430 

10 6 .640 .484 .568 .753 
 SDs .184 .400 .453 .330 

10 8 .361 .293 .330 .504 
 SDs .367 .424 .456 .666 

15 4 .579 .393 .471 .691 
 SDs .118 .430 .517 .362 

15 10 .438 .327 .387 .716 
 SDs .179 .303 .366 .281 

20 4 .600 .398 .490 .701 
 SDs .089 .432 .520 .348 

20 10 .590 .424 .502 .793 
 SDs .105 .286 .351 .184 

20 16 .375 .289 .327 .678 
 SDs .217 .281 .344 .381 

30 4 .632 .397 .476 .730 
 SDs .071 .421 .507 .324 

30 17 .516 .368 .427 .802 
 SDs .110 .219 .281 .190 

Overall Means .530 .379 .449 .703 
 
 
Table 11 
Performance comparison for 2 coders: 80 % unit boundaries in agreement
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  Methods 

 Length κ  'κ  (v = 1) 'κ  (v = 2) *κ  

0 % unit boundaries in agreement  

 10 .000 .003 .004 -.002 

 15 .004 .006 .004 .014 

 20 -.006 -.002 -.005 -.013 

 30 -.002 -.013 -.018 -.017 

 Total -.001  -.002  -.003  -.005  

50 % unit boundaries in agreement     

 10 .210 .101 .115 .178 

 15 .253 .120 .140 .277 

 20 .250 .124 .145 .285 

 30 .308 .146 .169 .328 

 Total .255 .123 .142 .254 

80 % unit boundaries in agreement     

 10 .527 .352 .398 .475 

 15 .586 .359 .423 .620 

 20 .581 .363 .425 .651 

 30 .608 .357 .423 .696 

 Total .576 .358 .417 .610 

 
 
Table 12 
Performance comparison for 4 coders



 

 71

 

  Methods 

 Length κ  'κ  (v = 1) 'κ  (v = 2) *κ  

0 % unit boundaries in agreement  

 10 .000 .002 .001 .003 

 15 -.001 .001 .004 .013 

 20 .000 -.002 -.002 .017 

 30 -.001 -.001 -.002 -.014 

 Total -.001 .000 .000 .005 

50 % unit boundaries in agreement     

 10 .210 .102 .118 .139 

 15 .256 .116 .134 .214 

 20 .246 .128 .147 .269 

 30 .310 .155 .179 .357 

 Total .256 .125 .145 .245 

80 % unit boundaries in agreement     

 10 .526 .350 .394 .459 

 15 .583 .349 .408 .610 

 20 .579 .353 .412 .649 

 30 .607 .352 .413 .691 

 Total .574 .351 .407 .602 

 
 
Table 13 
Performance comparison for 6 coders 
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  'κ  (v = 1) 'κ  (v = 2) 

Length Units Model I Model II Model I Model II 
3 2 0.500 0.500 0.500 0.500 
4 2 0.879 0.889 1.312 1.333 
5 2 1.237 1.249 2.512 2.496 
5 4 0.375 0.375 0.375 0.375 
6 2 1.581 1.599 3.950 3.994 
6 4 0.660 0.660 0.908 0.899 
7 2 1.936 1.945 5.832 5.833 
7 4 0.905 0.915 1.533 1.575 
7 6 0.278 0.278 0.278 0.278 
8 2 2.273 2.286 7.848 8.002 
8 4 1.160 1.156 2.418 2.400 
8 6 0.497 0.499 0.629 0.635 
10 2 2.948 2.956 13.271 13.288 
10 4 1.632 1.616 4.561 4.495 
10 6 0.881 0.878 1.594 1.588 
10 8 0.399 0.400 0.484 0.486 
15 2 4.600 4.637 31.846 32.421 
15 7 1.384 1.385 3.659 3.679 
15 12 0.405 0.406 0.520 0.529 
30 2 9.597 9.642 139.497 139.681 
30 12 1.792 1.797 6.272 6.343 
30 22 0.565 0.565 0.909 0.905 
50 2 16.640 16.337 408.768 400.369 
50 12 3.448 3.446 22.378 22.336 
50 22 1.592 1.597 5.270 5.282 
50 32 0.820 0.817 1.675 1.651 
50 42 0.327 0.326 0.434 0.432 

 
 
Table 14 
Comparison of expected disagreement 
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APPENDIX G 
 
 

 

 
Figure 1 
Illustration of two cumulative length functions for data in table 5 

 

 


