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Abstract

A permutation test can free the researchers from stringent parametric assumptions.

Multi-Response Permutation Procedure (MRPP) is a class of multivariate

permutation tests of group differences that offers vast improvement over the

traditional analysis of variance based tests in terms of robustness under non-normal

data and heterogeneous error variances. However, psychologists seldom make use of

MRPP in data analysis. It is partly attributable to the fact that MRPP is not

implemented in popular statistical packages that psychologists use. A set of SPSS

macros implementing the MRPP test is provided in this paper that may prove

useful for psychological researchers analyzing experimental data.
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Multi-response Permutation Procedure as An Alternative to

the Analysis of Variance: An SPSS Implementation

Permutation tests represent the ideal situations where one can derive the exact

probabilities associated with a test statistic, rather than approximate values

obtained from common probability distributions, such as the t, F and χ2, when

some or all the parametric assumptions are relaxed (Mielke & Berry, 2001, p. 1).

Carrying out randomization of the collected data rather than relying on the

parametric assumptions of random sampling or normality also enhances the

practicability of a test. In many cases, the only assumption made by a permutation

test is the exchangeability of the observational units under the null hypothesis,

which is much weaker than the parametric assumptions (see e.g., Hayes, 1996, for an

excellent discussion of this issue). Extended discussions of the merits of permutation

tests can be found in book-length treatments elsewhere (e.g. Edgington, 1995;

Good, 1993).

Multi-response Permutation Procedure (MRPP) was first introduced by

Mielke, Berry, and Johnson (1976) as a technique for detecting the difference

between a priori classified groups. It turned out to be an extremely versatile

data-analytic framework from which a number of applications fall out, such as the

measurement of agreement, multivariate correlation and association coefficients, and

the detection of autocorrelation (see Mielke & Berry, 2001 for a complete coverage

of applications of the MRPP framework).

MRPP is often analogous to parametric tests such as the t test or the analysis

of variance. In fact, it has been shown that many “classical” tests are special cases

of MRPP. For instance, Mielke and Berry (1994) demonstrated the equivalence
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between members of the MRPP family of statistics and the ANOVA / MANOVA

test statistics. What makes MRPP more attractive than the parametric

counterparts is its robustness under violations of the parametric assumptions (see

e.g., Mielke & Berry, 1994).

Despite its advantages over traditional methods, MRPP is not widely used in

psychology. I suspect that part of the reason is the lack of implementation of this

method in commercial statistical software packages. Although FORTRAN programs

were available from the inventors of this method (e.g. Mielke & Berry, 2001), none

of the popular statistical packages, such as SPSS and SAS, offers an option to

perform the MRPP tests 1. Perhaps this explains why MRPP is relatively unknown

to many psychologists. A citation index search shows that practicing psychological

researchers are not citing the seminal papers on the MRPP technique, an indication

that they are not using this method. In this paper I amend the situation by

providing a set of SPSS macros that can be invoked just as easily as any other SPSS

routines such as the familiar GLM or ONEWAY procedures when analyzing

multivariate data arising from experimental studies.

The remainder of this paper is organized in the following manner. First, I

shall briefly introduce the MRPP framework and the many analyses opportunities

using MRPP. Next, I shall describe the SPSS macros in some detail. Finally, I shall

analyze real data sets using the macro to demonstrate its user-friendliness.

Overview of MRPP

I shall start by presenting the basic formulations of MRPP for a simple

one-way layout. Only the minimum amount of details are included. A fuller
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description of MRPP can be found in Mielke (1984).

A Basic Formulation

It is assumed that there are k groups (or treatments) in a fixed-effects one-way

design 2. The outcome measures are possibly multivariate. The total sample size is

N , and each group is of size ni, where i = 1, . . . , k, such that
∑k

i=1 ni = N . Let

yI = (y1I , . . . , yrI)
′ denote an r × 1 vector of (possibly non-commensurate)

multivariate response observations from subject I, where I = 1, . . . , N .

If the multivariate responses are not commensurate, i.e., not measured in the

same unit, they must be standardized to the same metric before any MRPP

analyses can proceed. If r is one, the experimental design is simply a univariate

one-way layout, then commensuration is not needed, but if r is greater than one,

commensuration becomes a must. I will elaborate on the issue of commensuration

later. For the moment, it is assumed that the outcome measures are indeed

commensurate.

Let Si denote a set that contains all the yI ’s belonging to the ith group, where

i = 1, . . . , k. The basic building block of an MRPP statistic is a distance function

between two commensurate multivariate response vectors, yI and yJ ,

∆I,J =

[
r∑

h=1

(yhI − yhJ)2

]v/2

. (1)

Equation (1) is a special case of the Minkowski family of distance functions often

used in multidimensional scaling (see e.g., MacCallum, 1988). The two most

commonly used distance functions are: 1) the non-metric squared Euclidean distance

∆I,J =
r∑

h=1

(yhI − yhJ)2, (2)



MRPP IN SPSS 6

obtained by setting v = 2 in Equation (1), and 2) the metric Euclidean distance

∆I,J =

[
r∑

h=1

(yhI − yhJ)2

]1/2

, (3)

obtained by setting v = 1 in Equation (1). Clearly, both Euclidean and squared

Euclidean distance functions can be written compactly in matrix notation as

∆I,J =
[
(yI − yJ)′(yI − yJ)

]v/2

. (4)

When v = 1, MRPP tests based on the metric Euclidean distance has the nice

property of being more robust and less influenced by outliers (Mielke & Berry,

1994). The use of the non-metric squared Euclidean distance leads to a less robust

test. However, v = 2 often yields easier interpretations of the test results, because

many popular tests, such as the t test, the ANOVA F , and Hotelling’s T 2 all involve

the use of squared distance.

The MRPP statistic is a weighted average of within-group distances, where

the weights are determined by the group sizes 3. Geometrically, a smaller value of

the MRPP statistic indicates higher within group concentration and larger between

group differences (Mielke, 1984). Therefore, in terms of detecting treatment effect or

between group differences, a smaller value of the MRPP statistic is necessarily

“better.”

The MRPP statistic is given by

δobs =
k∑

i=1

Ciξi, (5)

where Ci is the group weight for i = 1, . . . , k, such that
∑k

i=1 Ci = 1, and

ξi =

(
ni

2

)−1 ∑
I<J

∆I,J ΨSi
(yI)ΨSi

(yJ), (6)
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is the average within-group distance for the ith group. The summation is taken over

all integer values of I and J such that 1 ≤ I < J ≤ N , and ΨSi
(yI) is an indicator

function given by

ΨSi
(yI) =

{
1, if yI ∈ Si,

0, otherwise.

Mielke (1984) gives an extensive discussion on the choice of group weights. For

Euclidean distance, Ci = ni/N should be used in general, and for squared Euclidean

distance, Ci = (ni − 1)/(N − k) should be used.

The test of significance of δobs is carried out by assuming the null hypothesis

that the

M =
N !

k∏
i=1

ni!

,

possible ways of allocating the N responses into the k groups are equally probable.

In other words, the null hypothesis states that the outcome observations are

independent of group membership. Since each permutation yields a realized value of

δ, the significance level of δobs is determined by the number of times the realized δ’s

are smaller than or equal to δobs. Hence, the p-value associated with δobs is

Pr(δobs) = {# δ ≤ δobs}/M .

Because M is usually a very large number even for relatively small sample

sizes, the exact null distribution of the MRPP statistic is difficult to obtain.

Therefore, Mielke et al. (1976) proposed the method of using a Pearson Type III

curve to approximate the discrete MRPP null distribution. This method only needs

the first three moments of the MRPP null distribution. The exact mean, variance,
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and skewness of the null distribution of the MRPP statistic are defined as

µδ = M−1

M∑
i=1

δi,

σ2
δ = M−1

M∑
i=1

δ2
i − µ2

δ ,

γδ =

M−1

M∑
i=1

δ3
i − 3µδσ

2
δ − µ3

δ

σ3
δ

.

Efficient computational formulae for finding these moments can be found in

Mielke et al. (1976). A standardized statistic T can then be calculated as

T =
δobs − µδ

σδ

, (7)

and because T is a one-to-one function of δobs, the p-value associated with δobs is

approximated easily by numerically integrating the Pearson Type III density

function from negative infinity to T

Pr(δobs) = Pr(T )
.
=

∫ T

−∞
f(x|γδ)dx, (8)

where f(x) is the Pearson Type III density function, completely characterized by a

skewness parameter (see Johnson, Kotz, & Balakrishnan, 1994, for details of the

Type III curve).

Percentage points of the Pearson Type III distribution have been extensively

tabulated (Harter, 1967), but these tables are rarely known to psychologists.

Fortunately, it turns out that there is a direct correspondence between the χ2

distribution and the Pearson Type III distribution. Because most statistical

packages, including SPSS, has a built-in capability to calculate the cumulative

distribution function (CDF) of the χ2 distribution, the approximate p-value for the
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MRPP statistic becomes easy to obtain. According to Harter (1967), when the

skewness parameter is positive, the Pearson Type III density can be recognized as a

standardized χ2 density with degrees of freedom ν = 8/γ2, mean µ = ν, and

variance σ2 = 2ν, where γ is the skewness of the Pearson Type III curve. Therefore,

whenever γ > 0, the p-value associated with T is approximated as

Pr(T ) = Pr(X ≤ x), where X is a χ2 random variable with ν degrees of freedom,

and x = µ + Tσ. In MRPP applications, the skewness is often negative. Therefore,

the p-value in Equation (8) can be approximated using the compliment of the χ2

CDF, Pr(T ) = 1− Pr(X ≤ x), where X is a χ2 random variable with ν degrees of

freedom, and x = µ− Tσ. When the skewness is zero, the Pearson Type III

distribution becomes a standard normal distribution, and the p-value of T can be

easily obtained from the standard normal CDF.

Commensuration

When the number of dimensions r in the outcome observations is greater than

one, the dependent variables may be expressed in completely different units, so a

multivariate standardization problem arises. Mielke and Berry (1994) proposed two

methods of dealing with the commensuration problem. Both methods involve a

slight change of the distance function defined in Equation (4).

The first method is termed Euclidean commensuration, and is intended for

v = 1. Returning to the notations used in Equation (1), let yI = (y1I , . . . , yrI)
′

denote an r × 1 vector (r ≥ 2) of non-commensurate multivariate response

observations from subject I. The corresponding vector of commensurate

multivariate observations xI = (x1I , . . . , xrI)
′ can be found by pre-multiplying the

vector yI by an r × r matrix Φ−1/2, i.e., xI = Φ−1/2yI , where Φ = diag
[
φ2

j

]
denotes
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a diagonal matrix with elements φ2
j on the diagonal for j = 1, . . . , r. The φj’s are

defined as

φj =
∑
I<J

|yjI − yjJ |.

Combining the above results with Equation (4), the Euclidean commensuration

essentially changes the definition of the Euclidean distance function to

∆I,J =
[
(yI − yJ)′Φ−1(yI − yJ)

]1/2

. (9)

The second method is called Hotelling commensuration, to be used with the

squared Euclidean distance (v = 2). It changes the definition of the distance

function to

∆I,J = (yI − yJ)′S−1(yI − yJ), (10)

where

S =
1

N




N∑
I=1

(y1I − y1·)
2 · · ·

N∑
I=1

(y1I − y1·)(yrI − yr·)

...
...

N∑
I=1

(yrI − yr·)(y1I − y1·) · · ·
N∑

I=1

(yrI − yr·)
2




is the r × r sample variance-covariance matrix.

Relation to Existing Statistics

When r = 1, v = 2, and group weights are Ci = (ni − 1)/(N − k), the MRPP

statistic δobs has the following relation to the mean square treatment used in

ANOVA (Mielke & Berry, 1994):

δobs =
(N − 1)µδ − 2(k − 1)MStrt

N − k
,
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where

MStrt =
1

k − 1

k∑
i=1

ni(yi − y),

and yi is the mean of the ith group, and y is the grand mean for the combined

sample. Because µδ is fixed for a given dataset, and MStrt depends only on the

means, the statistical inference based on MRPP is not influenced by variance

heterogeneity (Mielke & Berry, 1994).

When r ≥ 2, v = 2, group weights are Ci = (ni − 1)/(N − k), and Hotelling

commensuration is used, the MRPP statistic is related to the Bartlett-Nanda-Pillai

trace criterion V in MANOVA by the following identity

δobs =
2(r − V )

N − k
. (11)

In addition, V is also directly related to Hotelling’s T 2 statistic and Mahalanobis D2

statistic when the number of groups is 2. It is well known that T 2 is a generalization

of the Student’s t test. Therefore these parametric tests are all special cases of the

MRPP test, yet MRPP does not make use of normal distribution theory to make

inferences. Considering the fact that psychological data are rarely normal (Micceri,

1989), MRPP-based analyses offers a vast improvement over traditional methods.

MRPP Regression Analyses of Linear Models

The MRPP test, as described in the previous section, is only applicable to

one-way designs. To analyze data arising from more complex experimental designs,

the MRPP is combined with regression models with appropriately reparameterized

design matrices. This procedure is called MRPP regression analyses of linear models

(Mielke & Berry, 2001).
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It is well known that the F test of an effect in factorial analysis of variance

models can be approached within the ordinary least squares (OLS) regression

framework by comparing a reduced model (without the effect being analyzed) to a

full model (with the effect). For example, a fixed-effects one-way layout posits a full

model of the form

yij = µ + αi + eij, (12)

where yij denotes the response observation from the jth subject (j = 1, . . . , ni) in

the ith group (i = 1, . . . , k), µ is the grand mean, αi is the ith treatment effect, and

eij is the error term. To analyze the treatment effect, a reduced model is given by

yij = µ + eij. (13)

In the regression analysis, the treatment effect can be coded into the design matrix

as k− 1 columns, and the grand mean is simply represented as a column of ones. To

obtain the ANOVA F statistic for the effect α, one would first fit the model in

Equation (13), and then add the k − 1 variables representing the α effect to the

regression equation to fit the full model in Equation (12). The F test of incremental

R2 from the reduced model to the full model is equivalent to the F statistic derived

using ANOVA.

The MRPP regression analyses uses the same rationale, except that it replaces

the parametric test of incremental fit by the MRPP test. For the preceding one-way

layout, one would first fit the reduced model, obtain the regression coefficients, and

compute the residuals using the regression equation. Then, an MRPP analysis of

the residuals provides a statistical test of the treatment effect. More generally,

MRPP regression analyses is a three-step procedure. In step one, one would fit a

reduced regression model with all the effects in the regression equation but the one
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being analyzed. In step two, residuals are computed from the reduced model. This

is followed by step three, an MRPP analysis of the residuals. For example, consider

a two-way factorial design, and the experimenter is interested in analyzing the

interaction effect between the two factors. The full model is

yijk = µ + αi + βj + (αβ)ij + eijk, (14)

where the α’s and β’s are the main effects, and (αβ)ij represents the interaction.

The reduced model without the interaction is given by

yijk = µ + αi + βj + eijk. (15)

The MRPP analysis of residuals from fitting the reduced model in Equation (15) is

a test of the interaction effect. Note that the MRPP test requires grouping

information, but for all experimental designs, grouping information is implicit. For

example, for a 2-by-2 factorial design, there are altogether four treatment

combinations. All that is needed in the MRPP analysis of residuals is a single

grouping variable indicating to which treatment combination a particular residual

belongs.

Mielke and Berry (2001) suggested that instead of using residuals from OLS

regression, one can more profitably use residuals from Least Absolute Deviation

(LAD) regression. Unlike OLS regression that estimates the regression coefficients

by minimizing squared deviations, LAD regression minimizes absolute values of

deviations. Mielke and Berry (2001) showed that MRPP analyses of LAD residuals

using the Euclidean distance function (v = 1) leads to a more robust test against

outliers.
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Description of The Macros

Two SPSS macros are provided. The macros are programmed using SPSS’s

matrix language. The first macro is a fully functional MRPP routine that uses the

Pearson Type III approximation to obtain p-values. The second macro is a simple

LAD regression program that uses an algorithm tailored after the downhill simplex

method (Press, Teukolsky, Vetterling, & Flannery, 1992) to obtain LAD regression

coefficients. The downhill simplex takes starting values from an OLS regression.

Together, the two macros can perform all the tests described in the preceding

sections. The macros can be downloaded in electronic form from the following

website: http://www.unc.edu/∼lcai/programs.html.

As is true for all SPSS macro programs, one only need to run the them once in

each SPSS session. As soon as the macros are run, they become part of the SPSS

system, and can be invoked just as any other SPSS procedures. The macros will

stay active until the user quits SPSS. The macros read analysis data set from the

working data file. Only limited error checking is provided, so if the macro prints

error messages, discard the output and do not interpret the results. The missing

data is deleted list-wise.

Macro MRPP

The syntax of the MRPP macro is as follows

MRPP dist=[1|2] comm=[0|1|2] weight=[1|2] iv=grp dvs=dep vars.

The option “dist” determines the type of distance function to be used in the

MRPP analysis, where 1 indicates Euclidean distance (v = 1), and 2 for squared

Euclidean distance (v = 2). The default value is 1.
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The option “comm” determines the type of multivariate commensuration to

be applied on the outcome observations, where 0 means no commensuration, 1

means Euclidean commensuration, and 2 means Hotelling commensuration. The

default value is 1. However, this option has no effect when the outcome observations

are univariate, because commensuration is not necessary for the case of r = 1.

The option “weight” determines the type of group weights used in computing

the MRPP test statistic. When it is set to 1, weights of the form Ci = ni/N will be

used, and when it is set to 2, weights of the form Ci = (ni − 1)/(N − k) will be

used. The default value is 1.

The user must specify the name of the grouping (independent) variable in the

required argument “iv.” The dependent variables should be listed in the last

argument “dvs.” The names of the dependent variables must be separated by blank

spaces.

For example, suppose the SPSS working data file contains data from a

one-way design, and the dependent variables are called “y1,” “y2,” and “y3,” and

the grouping variable is called “grp.” The following syntax

MRPP iv=grp dvs=y1 y2 y3.

conducts an MRPP analysis using Euclidean distance, Euclidean commensuration,

and the first type of group weights. Note that by omitting the options, their values

defaults to 1’s. The following syntax

MRPP dist=2 comm=2 weight=2 iv=grp dvs=y1 y2 y3.

conducts an MRPP analysis using squared Euclidean distance, Hotelling

commensuration, and the second type of group weights. This combination of options

essentially gives a permutation version of the multivariate analysis of variance.
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Macro LADREG

The syntax of the LADREG macro is

LADREG ftol=[1E-6] maxit=[200] const=[1] dv=dv ivs=predictors.

The option “ftol” sets the convergence criterion for the iterative algorithm. The

default value is 1E-6, in scientific notation.

The option “maxit” sets the maximum number of iterations allowed in the

iterative line fitting algorithm before it quits without reaching the minimum. The

default is 200.

The option “const” determines whether the intercept is estimated or not.

When it is set to 1, a column of ones is included in the design matrix. When it is

set to 0, the intercept is not estimated. The default value is 1.

The required argument “dv” takes the name of the dependent variable. The

dependent variable must be in the SPSS working data file.

The names of the predictors are entered through the argument “predictors.”

The names must be separated by blank spaces.

For instance, if the dependent variable is called “y” in the open data set, and

the the predictors are called “x1” and “x2,” the following code

LADREG dv=y ivs=x1 x2.

conducts an LAD regression analysis with the intercept.

Examples

In this section, I will analyze two example data sets using the SPSS macros

provided in the last section. The output will be provided and the relation of the
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MRPP analyses to their parametric counterparts will be explored. The reader can

download the SPSS syntax file generating the output from the same web address as

the macro download page.

MRPP Analyses of Multivariate Outcomes

The data set comes from Mielke et al. (1976). In the original manuscript, it is

listed in Table I on page 1419. The data set contains three outcome variables, called

“v1,” “v2,” and “v3.” The grouping variable is called “grp.” There are k = 4

groups, and the total N is 21. The design is not balanced, and the group sizes (ni)

are 5, 4, 8, and 4 for i = 1, . . . , k, in that order. The command

mrpp dist=1 comm=0 weight=1 iv=grp dvs=v1 v2 v3.

conducts an MRPP analysis using Euclidean distance and the first type of group

weight. No commensuration is requested, as the original analysis in Mielke et al.

(1976) does not use any kind of commensuration. The above command replicates

Mielke et al.’s (1976) analysis.

The output from the macro is in Figure 1. The first few lines print some

information about the options. It is seen that no commensuration is invoked, and

the Euclidean distance is used. The Group Summary table prints the group size (ni),

average within group distance (ξi), and the group weights (Ci). The MRPP statistic

δobs =
∑k

i=1 ξiCi = 3.45 is located underneath “Tests of Significance” as “Delta.”

Then the exact moments of the MRPP null distribution are printed as Mean

(µδ = 8.11), Variance (σ2 = .31), and Skewness (γ = −1.06). The standardized

statistic T is found to be (δobs − µδ)/σ = (3.45− 8.11)/
√

.311 = −8.35. which gives

a p-value of 2.52E-6. Assuming that the three outcome measures are commensurate,
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there is indication of large between group difference. These results match exactly

with the output obtained from the BLOSSOM package (Cade & Richards, 2001).

A slightly different command

mrpp dist=1 comm=1 weight=1 iv=grp dvs=v1 v2 v3.

conducts the same analysis but with Euclidean commensuration turned on. The

output is in Figure 2. With a standardized statistic of -8.18 and a p-value of

3.34E-6, the macro produced exactly the same results as BLOSSOM (Cade &

Richards, 2001).

The following command

mrpp dist=2 comm=2 weight=2 iv=grp dvs=v1 v2 v3.

uses the squared Euclidean distance with Hotelling commensuration and the second

type of group weights for the same one-way design. The output is in Figure 3.

Again, the results match exactly with the BLOSSOM package (Cade & Richards,

2001). As noted afore, this command essentially produces a permutation version of

the multivariate analysis of variance. In this case, the Bartlett-Nanda-Pillai trace

criterion V for the test of group difference is equal to 1.161. The direct

correspondence between the MRPP test statistic and V is evident because according

to Equation (11), δobs should be equal to

2(r − V )

N − k
=

2(3− 1.161)

21− 4
= .216,

which is indeed the case. For this data set, the parametric test V translates into an

approximate F statistic, F (9, 51) = 3.577, p = .002. Judging from the rather small

p-values obtained from both parametric test and permutation test, it seems that the

groups do differ significantly.
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MRPP Regression Analysis of LAD Residuals

In this section I will analyze a data set from the popular experimental design

textbook by Keppel (1991). This data set characterizes a 2× 3 balanced factorial

design. Factor A has two levels, and factor B has three levels. The cell size is 4, so

the total N is 24, and the number of treatment combinations is 6. In this example, I

am going to analyze the interaction effect using both the LADREG macro and the

MRPP macro.

First, the full and reduced models are already given by Equations (14) and

(15). For a 2× 3 design, 3 columns of effects code are needed to fully represent the

two main effects. In the data set, the outcome variable is called “y,” the effects

coded variable for factor A is called “x1,” and the two coded variables to represent

factor B are called “x2” and “x3.” In addition, I also created a six-level grouping

variable (called “tc”) to indicate to which treatment combination the outcome

observation belongs. In the next step, “x1,” “x2,” and “x3” are entered into the

LAD regression. This is the reduced model, and LAD residuals are computed from

the reduced model coefficients. In the final step, I run the MRPP macro with the

residuals as the outcome variable, and “tc” as the grouping variable.

The following command

LADREG dv=y ivs=x1 x2 x3.

fits the reduced model to the data. The output is in Figure 4. It is seen that the

OLS solution is also the LAD solution, because the first row of the Starting Simplex

is the same the first row in the Final Simplex. It took the macro 5 iterations to

determine that it has reached a minima, and at this minimum, the sum of absolute
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values of the residuals is 94 4. To compute the residuals using the LAD regression

coefficient estimates, the following SPSS commands can be used

compute res = y-(10.00000-x1-3*x2+x3).

execute.

For the MRPP analysis of residuals, the following command is used

mrpp iv=tc dvs=res.

and the output is in Figure 5. The MRPP p-value for the A×B interaction is .46.

In contrast, the conventional ANOVA analysis of this interaction effect gives

F (2, 18) = 3.92, p = .038, which is significant at the .05 level.

Discussion

The MRPP a robust alternative to the traditional normal theory based

parametric tests, such as the t test and the analysis of variance. However, MRPP is

not widely known to psychological researchers, and part of the reason is that it has

not been incorporated into major statistical packages. To overcome this limitation,

SPSS macros that implement the MRPP test are provided in this paper, in the hope

that they will make MRPP more accessible to psychologists analyzing experimental

data. It is shown by analyzing real data sets that the macros are as easy to use as

the standard SPSS procedures such as GLM or ONEWAY.
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Footnotes

1A free stand-alone software (BLOSSOM; Cade & Richards, 2001) is available

from http://www.fort.usgs.gov/products/software/blossom/blossom.asp. However,

users still face data management problems in transporting their data sets into

formats amenable to analysis in BLOSSOM.

2The notations are primarily formatted after Mielke and Berry (2001) to

achieve consistency.

3For notational simplicity both the “excess group” and the truncation of

distance to a preset maximum are excluded from discussion in the present paper

(for details see Mielke & Berry, 2001).

4Note that the LAD coefficients are not unique.
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Figure Captions

Figure 1. MRPP Analysis – I

Figure 2. MRPP Analysis – II

Figure 3. MRPP Analysis – III

Figure 4. LADREG Output

Figure 5. MRPP Analysis of LAD Residuals
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Multi-Response Permutation Procedure (MRPP)

No commensuration invoked

Metric Euclidean distance function invoked

Total sample size

21

Group summary

N Distance Weights

5.000000000000 3.580166225429 .238095238095

4.000000000000 3.214880033153 .190476190476

8.000000000000 3.681188834369 .380952380952

4.000000000000 3.060205742503 .190476190476

Moments of the MRPP null distribution

Mean Variance Skewness

8.110161833941 .311462970802 -1.05618948865

Test of Significance

Delta T Sig.

3.450032614510 -8.35015906239 .000002517390



MRPP IN SPSS, Figure 2

Multi-Response Permutation Procedure (MRPP)

Euclidean commensuration invoked: print the Phi matrix

820836 0 0

0 698896 0

0 0 1102500

Metric Euclidean distance function invoked

Total sample size

21

Group summary

N Distance Weights

5.000000000000 .003893040759 .238095238095

4.000000000000 .003491150118 .190476190476

8.000000000000 .004050703860 .380952380952

4.000000000000 .003412210188 .190476190476

Moments of the MRPP null distribution

Mean Variance Skewness

.008679002569 .000000357445 -1.05825645899

Test of Significance

Delta T Sig.

.003784965519 -8.18583042093 .000003343974



MRPP IN SPSS, Figure 3

Multi-Response Permutation Procedure (MRPP)

Hotelling Commensuration invoked: print SSCP matrix

270.5714286 225.5714286 277.8571429

225.5714286 233.2380952 264.1904762

277.8571429 264.1904762 370.9523810

Squared Euclidean distance function invoked

Total sample size

21

Group summary

N Distance Weights

5.000000000000 .130895548347 .235294117647

4.000000000000 .242633791183 .176470588235

8.000000000000 .289113143558 .411764705882

4.000000000000 .134329829458 .176470588235

Moments of the MRPP null distribution

Mean Variance Skewness

.300000000000 .000441890947 -.515294791321

Test of Significance

Delta T Sig.

.216368532954 -3.97843405036 .000729406618
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Least Absolute Deviation (LAD) Regression Using

Downhill Simplex Minimization Method

Criterion variable is:

Y

Sample Size

24

Starting Simplex:

10.00000 -1.00000 -3.00000 1.000000

11.00000 -1.00000 -3.00000 1.000000

10.00000 .000000 -3.00000 1.000000

10.00000 -1.00000 -2.00000 1.000000

10.00000 -1.00000 -3.00000 2.000000

Final Simplex:

10.00000 -1.00000 -3.00000 1.000000

11.00000 -1.00000 -3.00000 1.000000

10.63281 -1.24219 -2.60156 .578125

10.34912 -1.00244 -2.67139 .975586

10.41016 -1.52734 -3.01953 1.726563

Number of iterations:

5.00

Sum of absolute values of the residuals:

94.00

LAD Parameter Estimates

Intercep X1 X2 X3

10.00000 -1.00000 -3.00000 1.000000



MRPP IN SPSS, Figure 5

Multi-Response Permutation Procedure (MRPP)

Commensuration not needed: dimensionality of response = 1

Metric Euclidean distance function invoked

Total sample size

24

Group summary

N Distance Weights

4.000000000000 4.000000000000 .166666666667

4.000000000000 5.000000000000 .166666666667

4.000000000000 6.000000000000 .166666666667

4.000000000000 7.000000000000 .166666666667

4.000000000000 5.000000000000 .166666666667

4.000000000000 5.000000000000 .166666666667

Moments of the MRPP null distribution

Mean Variance Skewness

5.318840579710 .275221989148 -.754307128559

Test of Significance

Delta T Sig.

5.333333333333 .027625448948 .460765917774


